
approaches to large-scale RNA analysis are serial analysis of gene 
expression (SAGE)4,5 and related methods such as massively par-
allel signature sequencing (MPSS)6, which use DNA sequencing 
of previously cloned tags 17–25 base pairs (bp) from terminal 3′ 
(or 5′) sequence tags. These sequence tags are then identified by 
informatic mapping to mRNA reference databases or, for longer 
tag lengths, to the source genome. A strength of SAGE and SAGE-
like methods is that they produce digital counts of transcript 
abundance, in contrast to the analog-style signals obtained from 
fluorescent dye–based microarrays. However, SAGE-family assays 
provide no information about splice isoforms or new gene discov-
ery, and fully comprehensive measurements of lower-abundance-
class RNAs have not been achieved owing to cost and technology 
constraints. Expressed sequence tag (EST) sequencing of cloned 
cDNAs has long been the core method for reference transcript 
discovery7–9. It has both qualitative and quantitative limitations, 
imposed partly by historic sequencing capacity and cost issues, 
and more crucially by bacterial cloning constraints that affect 
which sequences are represented and how sequence-complete 
each clone is. Recently, dense whole-genome tiling microarrays 
have been developed and applied to transcriptomes for measur-
ing expression and for transcript discovery10–14. In contrast to 
expression arrays, these tiling arrays can discover new genes and 
exons, but they require large amounts of input RNA and have 
other limitations that affect sensitivity, specificity and direct splice 
detection.

A simpler and potentially more comprehensive way to measure 
transcriptome composition and to discover new exons or genes is 
by direct ultra-high-throughput sequencing of cDNA (Fig. 1a). 
This RNA-Seq approach avoids the need for bacterial cloning of 
the cDNA input. The resulting sequence reads are individually 
mapped to the source genome and counted to obtain the number 
and density of reads corresponding to RNA from each known exon, 
splice event or new candidate gene. The presence and amount of 
each RNA can be calculated and subsequently compared with the 
amount in any other sequenced sample, now or in the future. If 
enough reads (>40 million) are collected from a sample, it should 
in theory be possible to detect and quantify RNAs from all biologi-
cally relevant abundance classes and to map RNA splice choices for 
transcripts of high and moderate abundance.

We have mapped and quantified mouse transcriptomes by 
deeply sequencing them and recording how frequently each 
gene is represented in the sequence sample (RNA-Seq). This 
provides a digital measure of the presence and prevalence of 
transcripts from known and previously unknown genes. We 
report reference measurements composed of 41–52 million 
mapped 25-base-pair reads for poly(A)-selected RNA from 
adult mouse brain, liver and skeletal muscle tissues. We used 
RNA standards to quantify transcript prevalence and to test 
the linear range of transcript detection, which spanned five 
orders of magnitude. Although >90% of uniquely mapped 
reads fell within known exons, the remaining data suggest 
new and revised gene models, including changed or additional 
promoters, exons and 3′ untranscribed regions, as well as new 
candidate microRNA precursors. RNA splice events, which are 
not readily measured by standard gene expression microarray 
or serial analysis of gene expression methods, were detected 
directly by mapping splice-crossing sequence reads. We 
observed 1.45 × 105 distinct splices, and alternative splices 
were prominent, with 3,500 different genes expressing one or 
more alternate internal splices.

The mRNA population specifies a cell’s identity and helps to gov-
ern its present and future activities. This has made transcriptome 
analysis a general phenotyping method, with expression microar-
rays of many kinds in routine use. Here we explore the possibility 
that transcriptome analysis, transcript discovery and transcript 
refinement can be done effectively in large and complex mam-
malian genomes by ultra-high-throughput sequencing.

Expression microarrays are currently the most widely used 
methodology for transcriptome analysis, although some limita-
tions persist. These include hybridization and cross-hybridization 
artifacts1–3, dye-based detection issues and design constraints that 
preclude or seriously limit the detection of RNA splice patterns 
and previously unmapped genes. These issues have made it dif-
ficult for standard array designs to provide full sequence compre-
hensiveness (coverage of all possible genes, including unknown 
ones, in large genomes) or transcriptome comprehensiveness 
(reliable detection of all RNAs of all prevalence classes, including 
the least abundant ones that are physiologically relevant). Other 
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on poly(A)-selected RNA from adult C57BL 
mouse brain, liver and skeletal muscle tis-
sues.

ReSulTS
RNA-Seq sample preparation and 
sequencing
Uniformity of sequence coverage across 
transcripts will affect sensitivity of detec-
tion, accuracy of quantification and com-
pleteness of splice and exon maps. In 
preliminary experiments, we found that 
controlled hydrolysis of RNA samples 
before cDNA synthesis steps significantly 
improved the uniformity of sequence cov-
erage across transcripts, although coverage 
uniformity did not achieve the theoretical 
limit (Supplementary Fig. 1a,b online). 
The rationale for using hydrolysis of RNA 
before random priming rather than frag-
mentation of cDNA at the next step was 
twofold. First, cDNA priming at puta-
tively random sites, if fully successful, will 
over-represent 5′ ends of transcripts, and 
this uneven representation will have dif-
fering impact on RNAs of different sizes. 
Second, preliminary data strongly sug-
gested that there are some strongly favored 
and disfavored sites of random priming, 
and we observed this in samples that were 
primed without hydrolysis. It did not, how-
ever, correspond to simple GC content bias 
(Supplementary Fig. 1b). We reasoned that, 
at room temperature, some RNA second-
ary structure may shield parts of transcripts 
from priming while favoring other sites. By 

fragmenting the RNA, we expected to reduce the amount of such 
secondary structure, though not completely eliminate it. RNA frag-
mentation before copying would also be expected to greatly reduce 
5′ bias. This protocol gave better overall uniformity than protocols 
without RNA fragmentation (Supplementary Fig. 1), although 
some residual and reproducible nonuniformity clearly persists for 
randomly primed substrates that was not observed in other kinds 
of Illumina sequencing substrates handled simultaneously, such as 
chromatin immunoprecipitation sequencing (ChIPSeq) samples 
(for example, Supplementary Fig. 1c).

For each transcriptome measurement (mouse liver, skeletal 
muscle and total brain), we made randomly primed cDNA from 
100 ng poly(A)+ RNA hydrolyzed to 200–300 nucleotides (nt), and 
constructed a Solexa molecular library (Fig. 1). We obtained 10–30 
million 25-bp reads mapping to unique sites in the mouse genome 
from each library, with two independent libraries assayed for each 
source tissue. Additional reads were later mapped to RNA splices and 
to some regions not included in the ‘uniquely mappable’ genome. 
All primary sequence read data for both replicates of the three tissue 
RNAs have been submitted to the National Center for Biotechnology 
Information (NCBI) short-read archive (accession number 
SRA001030). RNA-Seq Summary data are in Supplementary Figure 
2 and Supplementary Table 1 online.

Some challenges to performing RNA-Seq are expected to affect 
transcriptomes from all organisms similarly, such as how uniformly 
sequences from an entire transcript will be represented, how much 
sequence is required to reliably detect and measure the concentra-
tion of RNAs of lower abundance classes, how the data will be quan-
tified and how relative quantification will be converted to absolute 
RNA concentrations. In addition, transcriptomes of organisms with 
large genomes, containing genes with more complicated structure, 
present some special challenges. Yeast and Arabidopsis thaliana 
transcriptomes have been profiled by RNA-Seq approaches con-
currently with this study15–17, but the mouse and human genomes 
are much larger and more complex than these. This increases the 
computational resources needed to simply map reads onto the 
genome, and it also requires the mapping of splice-crossing reads 
that span very large introns. These demands mean that it is not 
possible to use some tools that might be tenable in a small genome 
with few introns, such as BLAST18. Large genomes are also typically 
rich in families of paralogous genes, which presents the challenge 
of mapping reads that could map equally well to multiple sites in 
the genome. Here we have begun to address issues pertaining to 
the acquisition, standardization and analysis of large and com-
plex transcriptomes by RNA-Seq. As a test mammalian case, we  
performed RNA-Seq, using Illumina/Solexa sequencing technology,  
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Figure 1 | Outline of RNA-Seq procedure. (a) After two rounds of poly(A) selection, RNA is fragmented 
to an average length of 200 nt by magnesium-catalyzed hydrolysis and then converted into cDNA 
by random priming. The cDNA is then converted into a molecular library for Illumina/Solexa 1G 
sequencing, and the resulting 25-bp reads are mapped onto the genome. Normalized transcript 
prevalence is calculated with an algorithm from the ERANGE package. (b) Primary data from mouse 
muscle RNAs that map uniquely in the genome to a 1-kb region of the Myf6 locus, including reads that 
span introns. The RNA-Seq graph above the gene model summarizes the quantity of reads, so that each 
point represents the number of reads covering each nucleotide, per million mapped reads (normalized 
scale of 0–5.5 reads). (c) Detection and quantification of differential expression. Mouse poly(A)-
selected RNAs from brain, liver and skeletal muscle for a 20-kb region of chromosome 10 containing 
Myf6 and its paralog Myf5, which are muscle specific. In muscle, Myf6 is highly expressed in mature 
muscle, whereas Myf5 is expressed at very low levels from a small number of cells. The specificity of 
RNA-Seq is high: Myf6 expression is known to be highly muscle specific, and only 4 reads out of 71 
million total liver and brain mapped reads were assigned to the Myf6 gene model.
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and phage lambda templates (Fig. 2c). These standards comprised 
long (~10,000 nt), intermediate (~1,500 nt) and short (~300 nt) 
transcripts, and they were designed to span the range of abundance 
(~0.5–50,000 transcripts per cell) typically observed in natural 
transcriptomes. RNA-Seq data for the standards were linear across 
a dynamic range of five orders of magnitude in RNA concentra-
tion. Sequence coverage over test transcripts was highly reproducible 
and quite uniform (Supplementary Fig. 1c). At current practical 
sequencing capacity and cost (~40 M mapped reads), transcript 
detection was robust at 1.0 RPKM and above for a typical 2-kilo-
base (kb) mRNA (~80 individual sequence reads resulting in a P 
value <10−16). Beyond simple detection confidence, we analyzed the 
impact of different amounts of sequencing on our ability to measure 
the concentration of a given transcript class (defined on the basis of 
RPKM) within ±5% (Fig. 2d). When these RNA standards are used 
in conjunction with information on cellular RNA content, abso-
lute transcript levels per cell can also be calculated. For example, on 
the basis of literature values for the mRNA content of a liver cell19 
and the RNA standards, we estimated that 3 RPKM corresponds to 
about one transcript per liver cell. For C2C12 tissue culture cells, for 

High read number is relevant for RNA-Seq because our ability to 
reliably detect and measure rare, yet physiologically relevant, RNA 
species (those with abundances of 1–10 RNAs per cell) depends on 
the number of independent pieces of evidence (sequence reads) 
obtained for transcripts from each gene. This constraint influenced 
our sequencing strategy, choice of instrument and choice of the 
25-bp read length.

The sensitivity of RNA-Seq will be a function of both molar con-
centration and transcript length. We therefore quantified transcript 
levels in reads per kilobase of exon model per million mapped reads 
(RPKM) (Fig. 1a,c). The RPKM measure of read density reflects 
the molar concentration of a transcript in the starting sample by 
normalizing for RNA length and for the total read number in the 
measurement. This facilitates transparent comparison of transcript 
levels both within and between samples.

examination of a well-characterized locus
Data from a 21-million-read transcriptome measurement of adult 
mouse skeletal muscle (Fig. 1b,c) illustrate some key characteris-
tics of our results. Myf6 (also known as Mrf4) is a much-studied 
myogenic transcription factor gene that is 
expressed specifically and modestly in mus-
cle, as expected, but silent in liver and brain. 
Evidence for Myf6 expression in skeletal 
muscle (Fig. 1b) consisted of 1,295 sequence 
reads 25 bp in length that map uniquely to 
Myf6 exons, and 30 reads that cross splice 
junctions; another four reads fell within the 
introns. Brain and liver measurements of 
similar total read number had 1 and 0 reads 
on Myf6 exons, illustrating favorable signal-
to-noise characteristics, absolute signal and 
specificity (Fig. 1c).

RNA-Seq global data properties
Technical replicate determinations of 
transcript abundance were reproducible  
(R2 = 0.96, Fig. 2a). Summing the replicates 
over an entire transcriptome (Fig. 2b, liver; 
Supplementary Table 2 online) showed that 
the vast majority of reads (93%) mapped to 
known and predicted exons, even though 
the exons comprise <2% of the entire 
genome; 4% of reads were within introns; 
and only 3% fell in the large intergenic terri-
tory. We expected to observe some intronic 
reads in total poly(A)+ RNA because such 
preparations are known to include partially 
processed nuclear RNAs and because some 
genes might have internal exons that have 
not yet been added to the gene models. The 
3% intergenic fraction places a rough upper 
bound on possible noise reads.

To assess the dynamic range of RNA-Seq 
and to test for possible effects of starting 
transcript length on the observed transcript 
abundance, we introduced into each exper-
imental sample a set of known RNA stan-
dards transcribed in vitro from Arabidopsis 
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Figure 2 | Reproducibility, linearity and sensitivity. (a) Comparison of two brain technical replicate 
RNA-Seq determinations for all mouse gene models (from the UCSC genome database), measured in 
reads per kilobase of exon per million mapped sequence reads (RPKM), which is a normalized measure 
of exonic read density; R2 = 0.96. (b) Distribution of uniquely mappable reads onto gene parts in 
the liver sample. Although 93% of the reads fall onto exons or the RNAFAR-enriched regions (see 
Fig. 3 and text), another 4% of the reads falls onto introns and 3% in intergenic regions. (c) Six in 
vitro–synthesized reference transcripts of lengths 0.3–10 kb were added to the liver RNA sample (1.2 
× 104 to 1.2 × 109 transcripts per sample; R2 > 0.99). (d) Robustness of RPKM measurement as a 
function of RPKM expression level and depth of sequencing. Subsets of the entire liver dataset (with 
41 million mapped unique + splice + multireads) were used to calculate the expression level of genes 
in four different expression classes to their final expression level. Although the measured expression 
level of the 211 most highly expressed genes (black and cyan) was effectively unchanged after 8 
million mappable reads, the measured expression levels of the other two classes (purple and red) 
converged more slowly. The fraction of genes for which the measured expression level was within ±5% 
of the final value is reported. 3 RPKM corresponds to approximately one transcript per cell in liver. The 
corresponding number of spliced reads in each subset is shown on the top x axis.
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candidate exons or parts of exons; and (iv) calculate the prevalence 
of transcripts from each known or newly proposed RNA, based on 
normalized counts of unique reads, spliced reads and multireads. 
The new candidate RNA regions produced can be thought of as 
ESTs, and, like ESTs, some are provisionally appended to existing 
gene models if they meet several additional criteria. Remaining 
unassigned candidate transcribed regions (labeled RNAFAR fea-
tures) can then be used in conjunction with other confirming data 
to develop new or revised gene models. Final RPKM values for 
each dataset, together with intermediate values calculated at ear-
lier steps in ERANGE, are in Supplementary Datasets 1, 2, and 3 
online.

Although RNA-Seq is not affected by background from cross-
hybridization, as microarrays are, it is not free of ambiguities 

which we know the starting cell number and RNA preparation yields 
needed to make the calculation, a transcript of 1 RPKM corresponds 
to approximately one transcript per cell.

Analysis strategy and software
To analyze these data, we developed Enhanced Read Analysis of 
Gene Expression (ERANGE), which is outlined in Figure 3a and is 
available as Supplementary Software online and at http://woldlab.
caltech.edu/RNA-Seq. The functions of ERANGE are to (i) assign 
reads that map uniquely in the genome to their site of origin and, for 
reads that match equally well to several sites (‘multireads’), assign 
them to their most likely site(s) of origin; (ii) detect splice-crossing 
reads and assign them to their gene of origin; (iii) organize reads 
that cluster together, but do not map to an already known exon, into 
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Figure 3 | Enhanced Read Analysis of Gene Expression (ERANGE) and the allocation of multireads. (a) The main steps in the computational pipeline are 
outlined at left, with different aspects of read assignment and weighting diagrammed at right and the corresponding number of gene model reads treated in 
muscle shown in parentheses. In each step, the sequence read or reads being assigned by the algorithm are shown as a black rectangle, and their assignment 
to one or more gene models is indicated in color. Sequence reads falling outside known or predicted regions are shown in gray. RNAFAR regions (clusters of 
reads that do not belong to any gene model in our reference set) are shown as dotted lines. They can either be assigned to neighboring gene models, if they 
are within a specified threshold radius (purple), or assigned their own predicted transcript model (green). Multireads (shown as parallelograms) are assigned 
fractionally to their different possible locations based on the expression levels of their respective gene models as described in the text. (b) Comparison 
of mouse liver expanded RPKM values to publicly available Affymetrix microarray intensities from GEO (GSE6850) for genes called as present by Rosetta 
Resolver. Expanded RPKMs include unique reads, spliced reads and RNAFAR candidate exon aggregation, but not multireads. Genes with >30% contribution 
of multireads to their final RPKM (Supplementary Fig. 4) are marked in red. (c) Comparison of Affymetrix intensity values with final RPKMs, which includes 
multireads. Note that the multiread-affected genes that are below the regression line in b straddle the regression line in c.
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Widespread alternate splice isoforms
Splice-crossing reads, such as are shown for Myf6 (Fig. 1b), were 
identified by mapping otherwise unassigned sequence reads to a 
library of all known splice events in all University of California 
Santa Cruz genome database (UCSC) Mouse July 2007 (mm9) 
gene model splices. When we summed over the entire dataset, 
including all otherwise unmappable reads, splice-spanning reads 
comprised ~3% (Supplementary Table 1), which is consistent 
with splice frequency in gene models across the genome. To assess 
the efficiency of splice detection, we computationally predicted 
all reads expected to cross known splices in a transcriptome, by 
considering all UCSC gene models and their respective levels of 
expression based on exon reads. The observed instances of splice-
crossing reads were in good agreement with predictions (Fig. 4c). 
Based on sequence coverage of control transcripts, we further 
calculated that a splice will be detected with 95% confidence if 
a transcript is represented at >11 RPKM in a 40-million-read 
transcriptome.

We next assessed the extent of alternative splice usage. Alternate 
splices were extensive. We observed more than one alternate 
splice form for 3,462 genes in all three tissues (Supplementary  
Table 3 online). The vast majority (>93%) were multiple splice 
forms detected within at least one tissue (Fig. 4d), rather than 
being distinct splices restricted to one tissue as compared to 
another. However, as illustrated below for Mef2d transcripts, 
one splice form can be strongly quantitatively preferred over the 
other in each tissue, even though both are detectable. This initial 
splicing analysis provides minimum measures of the extent of 
alternative splicing, because splice detection is a function of tran-
script prevalence and because we only looked for known alter-
native splice events. We conclude that cDNA sequencing with 
30–40 million read measurements readily detects major splice 
isoforms for abundant and moderately abundant transcripts, 
whereas splice detection for the lowest-abundance RNA classes 
and isoforms is sporadic.

Transcript annotation and novel transcript discovery
In addition to known alternate splice forms, other sequence fea-
tures that are not in the NCBI and RefSeq annotations can also 
be found in the data. Summing over all three transcriptomes, we 
identified 16,923 regions that are not in the NCBI Gene annota-
tion and have less than 10% overlap with repeat-masked features. 
The RNAFAR algorithm (part of ERANGE, Fig. 3) clustered reads 
that were not associated with gene models and assigned 92% of 
these candidate exons to neighboring gene models when they 
were within a specifiable distance of the model (here we used 
a permissive 20-kb distance parameter to help identify candi-
date additions to untranscribed regions (UTRs), including new 
external exons, and to discriminate these from RNAFAR features 
that are the best candidates to be previously unknown genes). 
An illustrative example is Mef2d (Fig. 4), which has a prominent 
muscle-preferred protein coding exon (Fig. 4b) and also has a 
much longer 3′ UTR than the one described in RefSeq (Fig. 4a 
and Supplementary Fig. 5 online). We have tested some regions 
predicted by RNAFAR using RT-PCR, including the extended 
Mef2d 3′ UTR (Supplementary Fig. 5), and have noted partial 
or complete support for others in GenBank.

Combining all three transcriptomes, we consolidated the remain-
ing 1,320 unaffiliated RNAFAR regions into 596 candidate transcript 

caused by gene sequences that are closely related to each other. 
We surveyed the mouse genome informatically and found that 
76% of it is in 25-bp sequence segments that are unique, whereas 
6% is composed of 25-mers that occur 2–10 times in the genome 
(multireads). The remainder is composed of 25-mer reads that 
occur >10 times (Supplementary Fig. 3a,b online), and these are 
excluded from further analysis in this work. Of the 25-bp map-
pable reads from each mouse RNA-Seq sample, 13–24% fell into 
the multiread class, matching equally well at 2–10 different loca-
tions on the mouse genome rather than mapping best to a single 
site (Supplementary Fig. 3).

Most of the multireads in our datasets are attributable to known 
duplicated genes and segmental duplications. Myf6 is a well- 
studied example of gene duplication, lying immediately adjacent 
to its paralog, Myf5, on mouse chromosome 10 (Fig. 1c). For Myf6, 
only seven additional reads (0.5%) were from the multiread class, 
and these mapped to the conserved basic helix-loop-helix (bHLH) 
DNA-binding domain that defines genes as members of this par-
alogous family. In contrast, members of other multigene families, 
such as the ubiquitin B family (Supplementary Fig. 3b), are domi-
nated by multireads (42,642 = 97%) as compared with uniquely 
mappable reads (1,135). This is expected for paralogs that are very 
similar to each other and for internally repeated domains within 
some genes. If all multireads are simply discarded, as default set-
tings in current Solexa software do, the end result will be to under-
count greatly or even entirely fail to report expression for genes that 
have closely related paralogs, such as those of the ubiquitin family. 
To avoid this, ERANGE distributes multireads in proportion to the 
number of unique and splice reads recorded at similar loci. The 
inclusion and proportionate distribution of multireads will natu-
rally have variable impact on RNA quantification, with smaller 
effects on paralogs that are more divergent and larger effects on 
those that are more similar to each other (Supplementary Fig. 4 
online). In some rare instances for which there are no unique reads 
across an entire gene model, usually reflecting very recent gene 
duplication, ERANGE will distribute multireads evenly among 
candidate paralogs in the genome (Supplementary Dataset 4 
online). The impact of identifying and allocating multireads in 
this manner, summed over the three transcriptomes, was to change 
RNA quantification for 28% of genes scoring above a 5-RPKM 
threshold in the muscle transcriptome by more than 30%. 

The overall impact of allocating multireads in this manner was 
assessed by following where the affected transcript RPKM values 
fell before and after multiread allocation as a function of the cor-
relation between our liver RNA-Seq data and an independent, pub-
licly available Affymetrix mouse liver transcriptome measurement 
(Fig. 3b,c; multiread-affected genes shown in red). Multiread-
affected transcript measurements generally moved from being 
systematically under-represented relative to their value in the array 
data (Fig. 3b) to a position straddling the mean after multiread 
allocation (Fig. 3c). This suggests that the overall impact of our 
computational allocation of multireads is beneficial, as it improves 
the correlation with the microarray results. The overall picture 
of the transcriptome obtained by the two methods is similar  
(R2 = 0.69). However, unlike the rest of the distribution, the bot-
tom quartile of the Affymetrix ‘present’ calls showed no correlation 
with the RNA-Seq data (R2 = 0.03), suggesting that many of the 
putatively ‘expressed’ RNAs identified by the microarray analysis 
might be false positives.
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(ii) ~3,000 new or extended 5′ exons that 
imply different positions for promoters and 
alternate promoters, which should be use-
ful for interpreting data on regulatory factor 
interactions with each gene. The precise num-
ber of candidate features identified as possi-
ble 3′ or 5′ extensions or new internal exons 
depends on investigator choices in regard 
to analysis parameters (see Supplementary 
Table 4 online). At one extreme, one can 
exclude any new features adjacent to current 
exon models (by using a radius parameter of 
zero for RNAFAR in ERANGE) and regard 
all extensions as new features. Alternatively, 
one can set the parameter more permissively, 
which is useful when trying to find candidate 
unknown genes.

For relatively abundant candidate tran-
scripts (we estimate >30 RPKM), detailed 
validation experiments can be readily 
designed. However, sequence coverage from 
experiments of this size is not sufficient 
for definitive mapping of moderate- and  
lower-abundance newly identified exons 
and genes, unless the experiment is adjust-
ed to include prevalence normalization of 
input RNAs and use of longer-read sequenc-
ing, such as that provided by the current 454 
sequencing platform.

Although it is possible to construct cus-
tom microarrays to detect splice events 
directly20–22, RNA splicing has not gener-
ally been accessible for routine microarray 
methods, and it is not accessible by SAGE. 
Here, the sheer number of reads produced 
made it possible to identify splice events 

very effectively for high- and moderate-abundance RNAs (>15–25 
RPKM). In only three tissues, we found evidence for 1.45 × 105 dif-
ferent splices, from a library of ~2 × 105 possible splices. As expect-
ed, splices were detected sporadically in rarer transcripts. It would 
clearly be desirable to build a fully comprehensive map of splice 
isoforms, and this should be possible through extension of the cur-
rent RNA-Seq in two ways. First, detecting all splices for RNAs of 
all prevalence classes, and for rare alternative splice isoforms from 
any prevalence class, calls for prevalence-normalized input RNA 
or cDNA. This approach would distribute the sequence sampling 
power more evenly across all transcript species, and implementing it 
should require no new technology. Second, long-range contiguity of 
splice choices cannot be extracted from our data, and for this reason 
we explicitly did not attempt to quantify splice forms. We therefore 
reported all RPKM prevalence information on a per-locus basis.

We anticipate that use of rapidly improving ‘paired-end’ varia-
tions of ultra-high-throughput sequencing will soon provide addi-
tional information needed to assemble full splice isoforms (‘paired’ 
sequences are determined for both ends of single segment of DNA, 
and starting DNA can be of a known length class) and sequence 
newly identified transcripts in a genome-wide fashion. Coupled with 
appropriate bioinformatics tools, this should provide a way to map 
long-range splice contiguity, which is not possible with the present 

models. Some are expressed in all three tissues, whereas others are 
strongly tissue specific, such as the new candidate precursor of the 
neuronal microRNA mir-124-1 (Fig. 5 and Supplementary Fig. 6 
online). We did not attempt to assess whether other new RNAFAR 
models are likely to code for proteins.

diScuSSioN
This dataset of 140 million mapped sequence reads provides rich 
starting information for improving gene models across the mouse 
genome, although data from additional tissues and cell types, and 
from a variation on the current RNA-Seq methodology, will all be 
needed to drive a comprehensive reannotation. However, with the 
basic RNA-Seq used here and data from only three tissues, we iden-
tified ~17,000 features (RNAFAR clusters of reads) that are candi-
date new parts of existing genes (these are the majority of features 
that are not in the gene models), plus 596 new candidate transcripts. 
High-density tiling arrays have also been used to discover previously 
unknown RNAs10–12, but our data are not directly comparable to 
the data from those studies because of differences in the species, tis-
sue and type of RNA sample studied. Our data included evidence 
for (i) ~3,000 extended or newly identified 3′ UTRs, which are rel-
evant because of their possible roles in microRNA-mediated con-
trol of translation and post-transcriptional RNA metabolism, and  
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Figure 4 | Candidate new and revised exons identified by the RNAFAR algorithm. (a) A 40-kb region 
encompassing the Mef2d gene, which is expressed in adult muscle (28 RPKM in muscle and 45 RPKM 
in brain), and a neighboring gene that is expressed at a much lower level in brain. RefSeq has only a 
single annotation for Mef2d, but UCSC has five (labeled α–ε). The α form corresponds to the RefSeq 
model, and γ is a muscle-specific isoform23. The RNAFAR algorithm identified seven regions (red) 
enriched with reads that fell outside the NCBI gene annotations and were assigned by the algorithm 
to the Mef2d locus. (b) A 1.5-kb close-up of muscle-specific alternative splicing at the RNAFAR region 
labeled ‘B’ in panel a. The prevalence of splicing switches from the canonical exon in the brain sample 
to the RNAFAR exon in the muscle sample, as seen both in the ratio of spliced reads and in the number 
of reads falling on the two diagnostic exons. (c) The number of expected spliced reads for each gene 
model was predicted computationally, based on the number of introns and the exonic read density. The 
predicted number is then plotted against the number of splices observed (R2 = 0.90). (d) The tissue 
distribution of genes with two splice isoforms in the same tissue.

6 | ADVANCE ONLINE PUBLICATION | NATuRe MeThodS

ARTicleS
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

em
et

h
o

d
s



MeThodS
RNA preparation. Total RNA from pooled, adult C57BL6 mouse 
tissues was obtained from Stratagene (MVP Total RNA). Oligo(dT) 
selection was performed twice by using Dynal magnetic beads 
(Invitrogen) according to the manufacturer’s protocol. After selec-
tion, a single 100-ng aliquot of mRNA was reserved for evaluation 
on the BioAnalyzer.

cDNA preparation. Total RNA (75 µg) was subjected to two rounds 
of hybridization to oligo(dT) beads (Dynal). 100 ng of the resulting 
mRNA was then used as template for cDNA synthesis. The mRNA 
was first fragmented by addition of 5× fragmentation buffer (200 
mM Tris acetate, pH 8.2, 500 mM potassium acetate and 150 mM 
magnesium acetate) and heating at 94 °C for 2 min 30 s in a ther-
mocycler and was then transferred to ice and run over a Sephadex-
G50 column (USA Scientific) to remove the fragmentation ions. 
The reason for using random priming rather than dT priming is 
that the latter typically produces a bias in the product that favors  
3′ end representation. The extension issues do not affect all transcripts 
identically, and the cDNA population that results for each RNA spe-
cies is a complex function of its specific properties as a substrate for 
reverse transcription and the overall transcript length. We used 3 µg 
random hexamers, added to prime first-strand reverse transcription 
according to the manufacturer’s protocol (Invitrogen cDNA syn-
thesis kit). After the first strand was synthesized, a custom second-
strand synthesis buffer (Illumina) was added, and dNTPs, RNase H 
and Escherichia coli polymerase I were added to nick translate the 
second-strand synthesis for 2.5 h at 16 °C. The reaction was then 
cleaned up on a QiaQuick PCR column (Qiagen) and eluted in 30 µl  
EB buffer (Qiagen).

Sequencing and read mapping on the genome and across splices. 
Libraries were sequenced as 32-mers using the standard Solexa 
pipeline (version 0.2.6). Raw reads were then truncated as 25-mers 
and remapped with version 0.3 of the Efficient Local Alignment 
of Nucleotide Data (ELAND; A.J. Cox, personal communication) 

method. Combining prevalence normalization of input RNA with 
paired-end sequencing would presumably give the most complete 
splicing pattern map, and this analysis could also benefit from consid-
erably longer read-length data, such as those from the 454 sequenc-
ing platform. Another unknown in our data is RNA strandedness. 
This has been successfully addressed in transcriptome studies of 
Arabidopsis17. The RNA-Seq sample preparation developed in those 
studies has the particular advantage of reporting strand specificity.

Our data were very reproducible and sensitive, and quantifi-
cation was reliable over a broad range of RNA concentrations. 
However, limitations of current costs and sequencing capacity 
mean that low-prevalence RNAs from minority cells of naturally 
complex mixed tissues such as the brain will not be accessible 
under the current protocols. As has been true for microarrays, 
one path for improvement will be to push sample input require-
ments down, aiming for the single-cell level. For arrays, that path 
involves many rounds of amplification, and it is expected that 
similar approaches will be adapted for RNA-Seq. However, the 
actual number of molecules that can be sequenced on a single 
flow cell is similar to the number of 200-nt RNA pieces derived 
from a single animal cell. This means that it is theoretically pos-
sible to sequence the contents of a single cell with minimal prior 
amplification, though the technical challenges to implementation 
are considerable.

The strength of evidence for detecting any given rare tran-
script with RNA-Seq, especially if it has garnered multiple unique 
sequence reads, may be considerably greater than that provided 
by microarrays, because array fluorescence signals from a low- 
abundance true positive can be very difficult to distinguish, numeri-
cally and statistically, from background array signals due to cross-
hybridization and dye binding. A 40-million-read transcriptome 
measurement provides reliable measurement of a single transcript 
per cell (between 1 and 3 RPKM for C2C12 or liver cells, as discussed 
in the Results). At 40 million reads, 1× sequence coverage of the tran-
scriptome has been achieved (40 reads per kilobase of RNA).

This contrasts with an average read density of 0.03 RPKM in 
the sum of all regions that fall outside of exons and RNAFAR 
clusters, and constitutes an upper bound on what could be general 
‘background’. Although it is likely that this desirable specificity 
prevails for a majority of RNAs, a short sequence read that con-
tains one or more errors (wrong base calls) can coincidentally 
match—in its mutated form—to another existing sequence in the 
genome. This has the potential to create a specific kind of false-
positive background in RNA-Seq that is of interest because it will 
preferentially affect gene families. It would thus cause greatest 
mischief if one family member were very highly expressed (there-
fore generating occasional mutant reads) and the other gene to 
which it might map were not, in reality, expressed at all. Candidate 
instances of such miscalls can be culled for further evaluation if 
desired, but the sequencing errors themselves are being reduced 
by improvements in sequencing machines, use of longer high-
quality sequence reads (30–40 bp) and improved base-calling 
algorithms. Increased read length and sequence quality will also 
improve splice mapping and elevate (though modestly) the frac-
tion of the genome that will fall into the unique-read class. Finally, 
it will be important to develop more sophisticated probabilistic 
models for each transcriptome to further improve the certainty 
with which rare RNAs are called correctly and RNAs from related 
genes are quantified.
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Figure 5 | Candidate microRNA precursor. A 20-kb region of chromosome 
14 surrounding mir-124-1, which encodes a microRNA that is expressed in 
neurons and is embedded in a transcript that is not in the NCBI or RefSeq 
gene models. Our algorithm flagged the enriched regions that do not overlap 
repeat-masked regions as candidate exons into a candidate transcription 
unit, which correspond well to the mRNA and EST evidence available from 
GenBank.
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software using the – –multi option against an expanded genome con-
sisting of the standard mouse mm9 genome build and 42-mers rep-
resenting the last 21 bp of the upstream exon and the first 21 bp of the 
corresponding downstream exon of each mRNA splice documented 
in the knownGene table for mm9 plus our spike sequences. We called 
a locus alternatively spliced whenever two or more different splice 
reads either started on different exons and terminated on the same 
exon, or vice versa.

Normalized gene locus expression level analysis and multiread 
probability assignment. We calculated normalized gene locus 
expression levels using the ERANGE package, which we developed 
for this purpose (see Supplementary Software and Supplementary 
Methods online).

Additional methods. Details of adaptor ligation, size selection and 
amplification, spike control derivation and validation, sequencing and 
read mapping on the genome, algorithm, and conversion of RPKM 
into absolute transcript numbers are available in the Supplementary 
Methods. Additional information, including more raw data and the 
software code (see Supplementary Software), are also available at 
http://woldlab.caltech.edu/~alim/RNA-seq/. Subsequent versions of 
the code will be posted on that website as they are developed.

Accession numbers. NCBI Short Read Archive SRA001030 (short tag 
data).

Note: Supplementary information is available on the Nature Methods website.
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