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1 Introduction

DNA is a molecule which living organisms use to encode themselves and to
pass on this information to their offspring. To understand the fascination of
life, we need on the one hand knowledge of the coding and regulatory regions
within the DNA and on the other hand knowledge about processes inside
a cell. To acquire knowledge about the DNA, we need the sequence of the
nucleotides. Several sequencing methods have been proposed since the early
70s. The first such sequencing method devloped is calle dSanger sequencing
after his inventor Frederick Sanger.

1.1 Sanger biochemistry

This sequencing method was first developed in the early 1970s. Since the
early 1990s, it exists semi-automated implementations of this method. To-
day, there are two approaches to sequence DNA in high-throughput pipelines
based on the approach. The first approach clones randomly fragmented DNA
pieces into a plasmid . The second approach used PCR amplification with
primer which flank the target (targeting resequencing). The output of both
is an amplified template. An amplified template means the amplification
of the original DNA sequence. The following description is for targeting
resequencing with PCR. The sequencing step takes place in a ’cylce sequenc-
ing’ reaction with several rounds. A complementary primer is annealing to
the known sequence of interest. In each round of primer extension, there
is a stochastic probability to terminate by annealing a fluorescent labelled
dideoxynucleotides (ddNTPs). This kind of termination results in a mixture
of end-labelled sequences. Each label, on the terminating ddNTP of any given
fragment, corresponds to the nucleotide identity of its terminal position. The
sequences are determined by gel electrophoresis followed by a laser excitation
of the fluorescence labels coupled to four color detection of emission spectra.
A software translates these detection into DNA sequence. This method pro-
vides a limited level of parallelization because of a limitation in simultaneous
electrophoresis. Although sequencing with Sanger is also cost and time ex-
pensive, if it is used, a read-length of up to around 1000bp can be achieved.
DNA is as the carrier of hereditary information inherently static. Only by
the expression of genes within a cell proteins are produced and metabolism
takes place. In order to understand the processes inside a cell, there is hence
a high interest in messenger RNA (mRNA) which transfers the transcript
gneomics information to the the ribosomes. Depending on processes not yet
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completely understood and which are caused by different regulatory mecha-
nisms genetic information can be transcribed in several isoforms resultung a
a variety of different mRNAs.

1.1.1 Microarray

Microarray is also a general term for different methods, for example DNA-
microarray or protein-microarray. This approach allows an analysis of thou-
sands of biological samples simultaneously with only a small amount of bio-
logical sample. DNA-microarray is an example for sequencing by hybridisa-
tion. Usually oligos are designed as a representation of the reference sequence
observing several criteria like sufficient genome coverage, similar melting tem-
perature, no self complementary, and (near) uniqueness in the genome. This
method is cost efficient for genomic resequencing but is also used to determine
the quantity of mRNA expression of several genes. The protocol for measur-
ing mRNA levels of a probe first extracts the mRNA from the cell. After sev-
eral purification and amplifications steps, the mRNA is transformed in cDNA
and fixed on glass or membrane slides. For a better comparison, a reference
is printed on the slide too. To distinguish both, the transformed mRNA and
the reference are fluorescent labelled with different colours, Carbocyanin 3
(Cy3;green emission) or Carbocyanin 5 (Cy5;red emission),respectively. Af-
ter the hybridisation step the emission of each position on the microarray is
scanned with a laser determining the fluorescence intensity. One limitation
of this method is that sequences which are repetitive or subject to cross hy-
bridisation cannot easily be identified. Furthermore, there is a limitation to
the abiity to detect RNA splicing events or detect novel genes.

1.2 Next-generation sequencing

Today, another approach is available, called next-generation sequencing (NGS),
which subsumes a couple of different technologies, liek foer exmaple thos by
Illumina (Solexa), Applied Biosystems (SOLID), or Roche (454). Compared
with the Sanger biochemistry the NGS is less expensive for comprehensive
analysis of genomes, transcriptomes and interactomes. In this script we will
concentrate on RNA-Sequencing.
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1.2.1 RNA-Seq

RNA-Sequencing is also called "Whole Transcriptome Shotgun Sequencing".
This is a technique to sequence cDNA in order to get information about
the RNA sample content. As it was pointed out above DNA cannot give us
all informations for understanding cell processes but the transcriptome can.
Hence RNA-Seq aims at determining the level of mRNA expression of a cell
at a given point in time by sequencing the corresponding cDNA.

1.2.2 Advantages of RNA-Sequencing

RNA-Sequencing is an high-throughput analysis method and hence we can
get a lot of information in a short time at low costs. Furthermore, no bacterial
cloning of cDNA needed and hence there are no bacterial cloning artefacts
which affect the data or the experiment. In contrast to microarrays, this
method reached a high coverage and new exons and genes can be discov-
ered. Additionally, this method can be used to handle detect different RNA
isoforms.

There are different implementations of RNA-Sequencing pipelines, in this
script we will explain the ERANGE - pipeline (figure: 1.2.3 ) briefly [6] .

1.2.3 ERANGE - Pipeline

Figure 1: This figure shows the
main steps of the ERANGE-
pipeline described in the text.

This pipeline is one example of RNA-
Sequencing pipelines to explain the main
procedures of this method. in a first
step the RNA will be purified by poly(A)-
selection. After two rounds of poly(A) selec-
tion, the RNA is fragmented to an average
length of 200 nucleotides. RNA is unsta-
ble and quickly degrades because of ubiq-
uitous RNase molecules. Hence we have to
convert the RNA into cDNA before degra-
dation. This is done by random priming.
The cDNA will sequenced and we obtain
reads that are subsequently mapped to a
genome. The normalized transcript preva-
lence is calculated with an algorithm from
the ERANGE package.
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Figure 2: alignment variants

1.2.4 Read-mapping

There are three main alignment approaches,
global alignment, local alignment and semi-
global alignment (figure: 2). A global align-
ment is the alignment of two sequences with
approximately the same length like in the
Needleman-Wunsch algorithm. Here we calculate the optimal-similarity score
of a pairwise alignment to make a point about the similarity between both
sequences. If we want to study the similarity of two sub-strings like domains
of proteins we use local alignment (Smith-Waterman algorithm). The align-
ment between a large sequence and a shorter one is called semi-global align-
ment, because we calculate a global alignment of the shorter sequence within
a sub-sequence of the longer one. This approach is used to align reads onto
the genome. The term read-mapping describes the task of computing semi-
global alignments of many short sequences (reads) to a long sequence (the
genome). There are different algorithms for semi-global alignments available.
To choose the correct one there are different questions which could help.

Important Questions regarding choice of algorithm and implemen-
tation:

Input How long are the reads? How many are there?

How big is the genome?

What sequencing technology was used?

ist there a known error-profile or quality values?

Are gapped or ungapped alignments needed?

What kind of scoring / distance measure is adequate?
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According to the answer of the questions above we have different algorithms
to working with. Tools which are designed for short sequences allowing a
limited number of mismatches or short gaps e.g. Bowtie or MAQ. If we want
allow a higher number of mismatches and work with longer sequences we
could use tools like RazerS or MrsFast.

In general we divide mapping tools into two categories. 1) tools using a
filtering step with subsequent verification and 2) tools that presprocess the
genome in an index and search directly for approximate matches using this
index. In this script we discuss approaches out of both categories. In the
first part we discuss the Bowtie algorithm especially the Burrows-Wheeler-
Transformation (BWT) and L-to-F mapping. Furthermore, we show how we
could find an exact-match and an inexact-match. In a second part we give an
introduction in different filtering approaches like PEX and q-gram-counting.
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2 Definitions

An alphabet Σ is a nonempty set of symbols (also called letters). In the fol-
lowing, Σ will always denote a finite and ordered alphabet.

A pattern P over an alphabet Σ is a sequence of elements of Σ.

The length of a pattern P is denoted by P.

P[i] denotes the symbol at the i-th position of P. The substring P[i,j] is
a pattern of symbols from the i-th to the j-th position in P.
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3 Suffix Arrays (Short recapitulation)

A suffix array is an array of integers containing the starting positions of
suffixes of a string in lexicographical order of the corresponding suffixes.

Definition. Given a text T of length n, the suffix array for T , called suftab,
is an array of integers of range 1 to n+1 specifying the lexicographic ordering
of the n+ 1 suffixes of the string T$.

3.0.5 Example 1

Consider the string dog$. The suffix array for dog$ is [4,1,3,2], because the
suffixes of dog$ are $, dog$, g$ and og$ (in this lexicographic order).

3.0.6 Example 2

Consider the string abracadabra$. In this case $ represents a character ap-
pearing only once and which is lexicographically less than any other letter
in the string which we have to introduce so that no suffix can be a prefix of
another suffix.

1 2 3 4 5 6 7 8 9 10 11 12 index
a b r a c a d a b r a $ string

It has twelve suffixes: index sorted suffix
abracadabra$ 12 $
bracadabra$ 11 a$
racadabra$ 8 abra$
acadabra$ 1 abracadabra$
cadabra$ that can be sorted 4 acadabra$
adabra$ into lexicographical 6 adabra$
dabra$ order to obtain: 9 bra$
abra$ 2 bracadabra$
bra$ 5 cadabra$
ra$ 7 dabra$
a$ 10 ra$
$ 3 racadabra$
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⇒ For the string abracadabra$, the suffix array is [ 12, 11, 8, 1, 4, 6, 9, 2, 5, 7, 10, 3 ].

There is a number of linear time agorithms available to construct a suffix
array.
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4 The Burrows-Wheeler-Transformation

The Burrows-Wheeler transformation (BWT) was published by Michael Bur-
rows and David Wheeler in 1994 [[3]] . It is a reversible lossless transforma- obacht:

cites
added
(Dang)

tion algorithm, which permutes an input string into a new string. The string
obtained from the BWT lends itself to an effective compression.

4.1 Principle of BWT

The input for the BWT algorithm is a string S of length N with characters
of the ordered alphabet Σ. In the following explanation the algorithm will
be applied to this example input:

S = mississippi, N = 11,Σ ={i,m, p, s}

Then the BWT proceeds as follows: 1. Sort rotations

First we append at the end of S an special character, which does not belong
to given ordered alphabet Σ, e.g. #. Moreover this special character # is
lexicographically minimal meaning it is followed by all characters of Σ. As
a result the new string S ′ = S# has N + 1 characters. In the next step a
conceptual (N + 1) × (N + 1) matrix M whose rows are cyclic shifts of S
is constructed. Afterwards all rows are sorted lexicographically (see Fig. 3).
Remember that the matrix is just for visualization and does not exist in the
implementation.

obacht:
Good
(Reinert)2. Find last characters of rotations

Now, only the last and first column of matrix M are considered. Let they
be string L respectively F , e.g.:

L = ipssm#pissii and F = #iiiimppssss

Notice that the i-th character in L precedes in S the i-th character in F ,
since each row is a cyclic rotation. Furthermore there is another property of
the Burrows-Wheeler transformation called rank preserving property:
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Figure 3: Conceptual matrix of the Burrows-Wheeler transformation for in-
put example S = mississippi. All rows are cyclic rotations of S# and sorted
lexicographically.

obacht:
new for-
mulation
applied
(Dang)

Lemma 4.1 (Rank preserving property). Let c ∈ Σ be a fixed character.
Furthermore let i and j with i < j be two indices with c = L[i] = L[j] and
let Mi and Mj be the corresponding cyclic permutations. Then let k and l be
the indices in F corresponding to the cyclic permutations M r

i and M r
j where

M r
x is obtained from Mx by shifting cyclically one letter to the right. Then it

holds that k < l.

Proof: M is lexicographically sorted and since i < j it must hold that the
M r

i [2, N + 1] is lexicographically smaller than M r
j [2, N + 1]. Also observe

that M r
i and M r

j both start with the same character c by assumption which
does not change the order of M r

i and M r
j . Hence k < l.

The output of the BWT is the string L of length N+1 and the index I, which
is the number of the row, where the input S ′ occurs (e.g. I = 5, counting
from zero).
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Figure 4: 1: Due to the cyclic rotation all L[i] characters precede all char-
acters F[i] in a cyclic rotation 2: The BWT is rank preserving, i.e. the first
p occurring in F corresponds to the first occurring p in L; the second p in
F corresponds to the second p in L etc. for all characters. 3: Index I is the
row number where the unchanged string S# occurs.

4.2 BWT and suffix arrays

Since the BWT only stores one string characters, it is more memory efficient
than suffix arrays which store integers. This string is over an alphabet Σ
with only four letters A,C,G, T standing for the four nucleic acids. The
memory space needed for a string of size n is n bytes (size of a character).
On the contrary the suffix array will have to store for each base in the DNA
a distinct integer number allocating 4 bytes (or 8 for 64 bit architectures) for
each entry. Additionally using the suffix array the sequence information of
the DNA needs to be saved, too, whereas this information can be read out
of the BWT output, since it is a reversible algorithm. However, for reverting
the BWT naively additional 4n bytes are needed, because of the mapping
vector explained in chapter 4.3 on the following page. There are trade-off
strategies to reduce the space consumption (see chapter 5.3, on page 20)
Due to many repetition patterns in a big input S the BWT matrix has obacht:

references
added
(Dang)

rows ending with the same characters. Therefore L will have substrings of
repeating characters, which is useful for compression algorithms, e.g. the
Move-to-Front algorithm [[2]] combined with the Run-Length encoding [[1]].
Suffix arrays cannot be compressed this way, because they contain distinct
integer values by definition. To determine the BWT one can use the suffix
array, because the array contains the indices of the lexicographically sorted
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suffixes in S, which would be F . Since all characters of F are successors of
L, L is determined easily.

4.3 Retransformation

As mentioned before the BWT is reversible. In the following chapter the
naive algortihm is explained, whereas chapter 4.4 on this page introduces
another more efficient algorithm.
Using the input of the retransformation algorithm which is the string L of
length N + 1 with characters of the ordered alphabet Σ′ = Σ ∪ {#} and the
index I we will get the original string S, e.g.:

L = ipssm#pissii, N = 11, Σ ={i,m, p, s} and I = 5

1. Find F using L

Since every column in matrix M is a permutation of the string S#, the first
column F and the last column L also are permutations of S# and therefore
of one another. Since M has sorted rows and F is the first column, F is
sorted. Thus, one can determine F by sorting L.

2. F to L mapping

In the next step we build the mapping vector T where T [i] is the position
of the character in L corresponding to character F [i] according to the rank
preserving property. In our example this would be:

T = {5, 0, 7, 10, 11, 4, 1, 6, 2, 3, 8, 9}

To recover S we start at the position of # in L, which is the last character in
S#. As already known the successor of # is the character of F in the same
row, e.g.: m is the first character of S.

Afterwards we use our mapping vector T to get back from the m character in F
to the corresponding m character in L. Then we jump from the last character
of this row to the first character to get our next successor character in S and
we get mi in this example.

The iteration repeats again by using the mapping vector T to get back from
the i character in F to the corresponding i character in L and then by
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jumping to the front to get mis. The algorithm terminates, when # in F is
reached (see Fig 5).

Figure 5: Recovering the first 3 characters of example string S =
mississippi. Starting at the special character # in L one jumps to the
first character in the row to get the first character m of S in the first matrix
column F . Afterwards one gets the corresponding m in L using the mapping
vector T . Repeat this procedure until # in F is reached.

4.4 L-to-F mapping

In contrast to the previous section the following retransformation procedure
uses mainly the L-to-F mapping. The L-to-F mapping maps i to j, where
L[i] and F [j] correspond to the same character in the string S, i.e. M r

i = Mj

(see section 4.1).
In addition to the retransformation, the L-to-F mapping can be used to
search a pattern in the BWT of a text. The search algorithm iteratively
searches the pattern from back to front and in each steps stores an interval
of matrix rows starting with the current pattern suffix. The L-to-F mapping
is used to find the cyclic right shifts of these rows starting with the previous
pattern letter and thus representing matches of the pattern suffix which is
one character longer. The repetition of this procedure results in the interval
of rows starting with the whole pattern.
The L-to-F mapping needs the two structures C and Occ, which can be de-
termined from the BWT.
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C[c] C[c] contains for each c ∈ Σ the total number of charac-
ters in T which are lexicographically smaller than c.

Example: C[] for mississippi#
i m p s
1 5 6 8

Occ(c,q) Occ(c,q) is the number of occurrences of character c in
prefix L[1,q].

Example: L = ipssm#pissii Occ(s,5) = 2,
Occ(s,12) = 4

The occurrence should be calculated for each character of the alphabet and
each position in L. That means this mapping contains | Σ | ∗ | L | items.
Without compression the implementation of this mapping would require O(|
Σ | · | L |) space.

For mapping a character L[i] to F, you just need L, C, Occ and the formula

L− to− F (i) = C[L[i]] +Occ(L[i], i)

What does this formula compute in detail?
C[L[i]] is the position before the first L[i] in F. Occ(L[i], i) is the number of
occurrences of L[i] in string L[1,i]. That means the position before the first
L[i] is calculated and j is added if L[i] is the j-th occurrence in L.

14



Example: i = 9

L− to− F (9) = C[L[9]] +Occ(L[9], 9)

= C[s] +Occ(s, 9)

= 8 + 3 = 11
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5 EXACTMATCH

EXACTMATCH [4] is an algorithm that finds all occurrences of a pattern
P in a text by using the Burrows-Wheeler-Transformation of the text and
the help tables Occ and C introduced in chapter 4.4. One major advance
compared to other exact string matching algorithms is the O(P) running
time.
The algorithm uses the property that in the lexicographically sorted matrix
M the rows beginning with a given sequence appear consecutively. In short
the algorithm calculates the range of matrix rows beginning with successively
longer suffixes of the read. This calculation is repeated until the suffix is the
complete read. With each step the number of relevant matrix rows either
shrinks or remains the same. In the end the algorithm determines either
possible matching positions or an empty range of matrix rows (that means
the read doesn’t occur in the text).

5.1 Backward search algorithm

The backward search algorithm can be used to count the occurrences of a
pattern P in a text. It requires the Burrows-Wheeler-Transformation L and
the two structures C and Occ (see section 4.1, 4.4).

What is the main idea of this algorithm?
Remember that the BWT matrix rows are lexicographically sorted. Thus,
all rows with prefix P occur in a contiguous interval and it is possible to
calculate the first and last position of this interval. The first position can
be denoted as First and the last as Last. The number of occurrences of P
is Last− First+ 1. The backward search running time is O(P) because the
algorithm iterates over each character of P and determines the new interval
of rows. For this only Occ and C are necessary which can be accessed in
O(1) time. The algorithm is shown in Figure 6.

5.2 Algorithm to locate P in T

After performing the backward search algorithm, First and Last were deter-
mined. In the matrix M each row is a cyclic permutation of the text T and
each row Mi with i = First, . . . , Last is prefixed by P and thus represents
an occurrence of P in T . The next step is to determine for each row Mi the
position of the first row character in the text, which we denote as posT (i).
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The backward search algorithm works in
P iterations for i = P, . . . , 1.
First and Last are initialized with the
positions of the first and last occurrences
of P [P] in F .

Before executing step 2, First and
Last is the interval of rows beginning
with P [i,P]. Steps 4 and 5 determine the
suffixes in this interval that are preceded
by P [i− 1].

1) i← P;
First ← C[P [i]] + 1;
Last ← C[P [i] + 1];

2) While i > 1 and First ≤ Last do
3-5

3) i← i− 1;
c← P [i];
Proceed with the next character.

4) Find and L-to-F map the first occur-
rence of c in L[First, Last]
First← C[c]+Occ(c, F irst−1)+1;

5) Find and L-to-F map the last occur-
rence of c in L[First, Last]
Last ← C[c] +Occ(c, Last);

Finally the number of occurrences is
Last− First+ 1.

Text: mississippi
Pattern: si

Figure 6: The backward search algorithm

For a row i with Mi = T# obviously holds posT (i) = 1. If for a row i with
Mi 6= T# the cyclic rotation to the right by one character is Mj = M r

i then
posT (i) = posT (j) + 1 holds.

Using these observations it is possible to reduce the space consumption by
storing the positions posT (i) only of certains rows i and determine the po-
sitions of the remaining rows indirectly. The following section describes the
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algorithm in detail.

5.2.1 Compression of posT

The main idea of compressing posT is the following: If a row i is given then
either L[i] = # and thus posT (i) = 1 or posT (i) = posT (j)+1 for j the result
of the L-to-F mapping of i. As described before posT (i) of certain rows i
needs to be known. Therefore in a preprocessing the position of every x-th
character of T (x is a fixed distance) is stored in a data structure S.

Example:
posT (1) = 12
posT (3) = 8
posT (6) = 1
posT (10) = 4

Figure 7: Preprocessing. The position of every x-th letter in the text is
marked and stored for the corresponding row in S.

After the preprocessing, the position in T is determined for each i = [First, Last]:

1) j ← i;
t← 0;

2) while row i is not marked do

j ← C[L[j]] +Occ(L[j], j);

t← t+ 1;

3) return posT (i) = posT (j) + t

Example. In the following the shown example (see above) will be continued.
We have a BWT of the text mississippi#, the data structure S and First
and Last of the pattern si. For each i = [9, 10] we have to map the character
L[i] to its position in the text.
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i = 9

Step 1

row 9 is not marked
→ L-to-F(9)=11
→ Look at row 11
t=1

Step 2

row 11 is not marked
→ L-to-F(11)=4
→ Look at row 4
t=2

Step 3

row 4 is not marked
→ L-to-F(4)=10
→ Look at row 10
t=3

row 10 is marked
Calculation of the posT (9) :
posT (9) = posT (10) + 3 = 4 + 3 = 7
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i=10
The row 10 is marked and posT (10) can be found in S: posT (10) = 4.
Thus, the pattern occurs at positions 7 and 4 in the text.

5.3 Space consumption of EXACTMATCH

As mentioned before EXACTMATCH needs L, C, Occ and posT for the
algorithm. For a text of length n over the alphabet Σ, the length of L, C,
Occ and posT is n, | Σ |, n· | Σ | and n

x
.

The Burrows-Wheeler-Transformation L of the given text is just a string of
characters. If the text is for example the human DNA, the memory footprint
will be 3 billion × 1 byte (size of a character) without compression. However,
there are also algorithms to compress L.
The C-table contains for each letter of Σ the total number of characters in T
which are lexicographically smaller. So C contains | Σ | items. Each element
is a number less than n. For the example the alphabet contains the four
letters A, C, G, T and the maximal size can be 3 billion. That means the
memory footprint will be less than 4 × 4 bytes (size of the number).
The Occ mapping contains the number of occurrences for each character and
each possible prefix of L. As described before (see 4.4) without compression
Occ has | Σ | ×n entries storing the number of occurrences. For the human
DNA a space of 4 × 3 billion × 4bytes will be needed. One way to reduce
the size of Occ is to store only every x-th index. The entries that are omitted
can be reconstructed from stored entries at the cost of an increased running
time.
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6 Backtracking

6.1 How are mismatches handled?

Simply searching for exact matches is not sufficient. We have to be able to
look for reads with indels or that match with at least one or two mismatches.
This mismatches can occur due to sequencing errors or differences between
the genomes of reference and query organisms.

The Bowtie algorithm now combines the ability of the EXACTMATCH algo-
rithm to compute the complete set of all exact matches by moving along the
pattern character by character with a simple error enumeration and back-
tracking.

This backtracking algorithm performs a depth-first search through the space
of possible alignments. It does so by first exploring variants with no or few
errors and stops as soon as a valid alignemnt is found. If a valid alignment
exists, the algorithm will find it, but because the backtracking enumerates all
possible alignments, the first valid alignment encountered by the algorithm
will not necessarily be the ’best’ in terms of number of mismatches or in
terms of quality. It is also important to notice that the more mismatches
we allow, the higher the runtime of the backtracking will be if the match
contains many of the allowed errors.

The Backtracking algorithm works as follows: Go through the pattern P ,
from back to front and use this character to make a step in the EXACT-
MATCH algorithm. If the set of solutions (the interval in EXACTMATCH)
becomes empty we change the pattern at the current position (to an arbitrary
other character or gap) and increment the counter variable for the number
of mismatches. If the counter exceeds the maximum number of mismatches,
we have to backtrack (go back one position in the pattern and in EXACT-
MATCH) and try another character. If all posibilites are exhausted without
finding a valid match, we also have to backtrack. While backtracking we
have of course adapt the error counte accordingly.
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6.1.1 Pseudocode

• Input:

Text T

Pattern P

maximal number of mismatches (n)

• Output:

Position of one match with at most n mismatches

For the pseudocode we define a function int em(char c, int last, int
first) which return the number of matches for the current suffix of the pat-
tern as maintained by EXACTMATCH and adapts first and last accordingly.
For clarity reasons, this pseudocode works only for hamming distance.

Initialization:

first ← 1, last ← T + 1, i← P, k ← 0, k is the number of mismatches
accumulated during the search

If backtrack(P,k,i,first,last) Then output: found last-first+1 occur-
rences of P;

bool backtrack(P,k,i,first,last)

If k > n return false;

If last-first+1 > 0 and i=0 Then return true;

If last-first+1 <= 0 and i=0 Then return false;

tried characters ={P [i]};

If em(P[i], first, last) > 0 Then

If backtrack(P,k,i-1, first,last) Then return true;

While ∃ a character c ∈ Σ\ tried characters

P[i]=c;

tried characters= tried characters ∪{c}
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If em(P[i], first, last) > 0 Then

If backtrack(P,k+1,i-1, first,last) Then return true;

return false;

DIE ABBILDUNG IST FALSCH

6.1.2 Example: GGTA

In this small example we try to match GGTA to the genome which does
contain neither GGTA nor GTA, but GATA, allowing one mismatch. We
start with the first call of backtrack. EXACTMATCH search starts at the
end and goes to the front of the read. So the first nucleotide we trie to
match is A. The EXACTMATCH would give us in the em function of the
pseudocode a positive count, so we call backtrack with a smaller pattern
index and the same error count. Then T is matched and again backtrack
is recursively called. Now we try to match G. The em function reports
an empty range and hence we try other characters at this position. For
each possible choice we change the pattern and check, whether we can now
match by calling backtrack with an error count incremented by one and a
smaller index. If this call finds a match we return true. If not, all choices
of characters could not find a match and we return false. In our case we
might try A instead of G, and call backtrack with k = 1. Now em returns
a positive range (because the genome contains GATA) and we recurse again
matching G. Then we call backtrack for a last time with i = 0 and return
true, because the range is positive.

6.2 Excessive backtracking

Excessive backtracking occurs when there is already a mismatch in the be-
gining of a read and it’s likely to backtrack much more often then necessary.

Bowtie solves the problem of excessive backtracking with a technique of ’dou-
ble indexing’. Two indices of the genome are created: one containing the
BWT of the genome, called the ’forward’ index, and a second containing
the BWT of the genome with its character sequence reversed (not reverse
complemented) called the ’mirror’ index.
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7 Bowtie

Bowtie [5] is a fast and memory-efficient read mapping tool. The goal of
mapping tools is to map reads back to a reference genome to calculate read
densities and their positions. obacht:

Read
mapping
should be
introduced
in ??.
Here you
can refer
to that.
(Reinert)

Bowtie generates an index of the reference genome which is based on the
Burrows-Wheeler transformation (BWT) (see section 4). The constructed
index uses the Ferragina and Manzini exact matching algorithm [4] (see sec-
tion 5) to search through the index.

Furthermore, Bowtie provides a backtracking search method to find inexact
matches through the reference genome. In other words, Bowtie combines the
EXACTMATCH algorithm with a backtracking algorithm 6 that permits
mismatches and indels. If a valid alignment exists, then Bowtie will find it,
but because the search is greedy, the first valid alignment encountered by
Bowtie will not necessarily be the ’best’ in terms of number of mismatches
or in terms of quality.

8 Summary

In this section I will emphasize what techniques and arguments are central
to this part of the lecture in form of questions to which you should be able
to answer.

• RNA-Seq

– What is the main goal of RNA-Seq? What biological questions
can be answered.

– How does a typical RNA-Seq pipeline proceed. Can you describe
each step and the involved algorithmic problems?

• BWT

– How ist the BWT defined and how can you compute it efficiently
for a given string?

– How can you compute the L to F mapping? (what auxiliary tables
are used?)

– How can you compute those tables?

24



– How can you use the BWT and the L-to-F mapping for searching
a pattern in a string exactly?

– Why is the L-to-F mapping correct? (rank preserving property)

– How can you save space at the expense of run time for the L-to-F
mapping?

– How do you obtain the positions of the matches? What space do
you need?

– How can you save space at the expense of run time during the
computation of the positions?

• Back tracking

– How does backtracking work if we can employ an exact match-
ing algorithm of suffixes (or prefixes) of the patterns that works
character by character.

– How can you conceptually do backtracking with indels?
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9 Filtering

Filtering algorithms are based on the idea that it is faster to find the positions
of a non-matching string within a text, than to find the position of a match.
These algorithms discard all parts of a text, which do not contain possible
matching positions of a pattern string and at the same time find positions
which might be match. These possible matching positions need to be verified
by an additional string matching algorithm.

9.1 Disadvantages and advantages

Filtering algorithms are very sensitive to the error level α := k
m

(k = error,
m = pattern length). This affects the amount of a text that can be discarded
from further consideration. With higher error levels the costs for verifications
start to dominate and reduce the filter efficiency abruptly. In other words, if
we have to verify most of the text, filtering algorithms are not worth applying.

If we can discard large segments of the text, filtering method will result in a
fast search.

9.2 PEX

The PEX algorithm is one of the basic examples for filtering. This method
is based on the pigeonhole principle.

9.2.1 Pigenhole

This principle says, we have m objects (pigeons) and n sets (holes) where
m < n. If we place each object in one set there will be one set left
empty. The goal within read-mapping algorithms is to find all approx-
imated occurrences of a pattern (P ) with length P = m in a text (T )
with length T = n. The PEX algorithm reduce the approximated search
with most k errors to an exact searching with k + 1 sub-patterns. In this
case the pigeons are the k + 1 pattern pieces and the holes are the k er-
rors. The goal is to distribute the errors over the pattern pieces that one
sub-pattern has to match without error. A more general formalisation was
first formalised by Myers in 1994 which is the basis of the PEX algorithm.
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Figure 8: We have 8 pigeons
and try to place them in 9
holes. The result is, that one
hole will be empty.

Lemma 9.1. Let Occ match P with k
errors, P = p1, . . . , pj be a concatena-
tion of subpatterns, and a1, . . . , aj be non-
negative integers such that A =

∑j
i=1 ai.

Then, for some i ∈ {1, . . . , j}, Occ includes
a substring that matches pi with at most
baik
A
c errors.

Proof:

Let ki be the number of errors in pi. Then
the following holds:

k =

j∑
i1

ki (1)

Following the Lemma there exists at least
one i with baik

A
c ≥ ki.

We proof the Lemma by contradiction.
Therefore assume that there is no such i and it holds baik

A
c < ki; ∀ki.

Then the following chain of inequalities ist true for each ki:

ki ≥ b
aik

A
c+ 1 >

aik

A
.

Now it is easy to derive a cotradiction to our assumption, beacuse the fol-
lowing holds

k =

j∑
i=1

ki ≥
j∑
i=1

(baik
A
c+ 1) >

j∑
i=1

aik

A
= k

k > k 

Hence or assumption must have been wrong and as consequence the Lemma
is correct.

9.2.2 Basic procedure

The goal is to find an approximate occurrence of a pattern P of length m
in a text T of length n with at most k errors. The first step within the
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basic procedure is to divide the pattern string into k+1 pieces such that each
pattern piece has the same probability to occur in the text. If not enough
information is available a uniform distribution is assumed and the pattern
will be divided into pieces with approximately the same length. The goal of
this is that one piece of the pattern has to match without error. The second
step to search all pieces simultaneously with a multi-pattern string matching
algorithm, like Aho-Corasick or Wu-Manber. Since we have k+ 1 pieces and
allow at most k errors, each possible occurrence of the pattern will match at
least one of the pattern pieces exactly. The last step is the verification step.

The first two steps are intuitively clear. In the section below, the verification
step will be described more detailed.

9.2.3 Verification

For the verification we compare the entire pattern with the appropriate text
region. Assume the pattern piece pi = P [starti, endi] (starti and endi are
the start and end position of the i-th pattern piece), matches the text T [j :
j+(endi−starti)]. The complete pattern match has a length ofm+k and can
begin at most starti−1+k positions before position j in T . Also it finishes at
most m− endi +k positions after j+ (endi− starti) in T . The reason is that
the k errors can occur on the left or right of the current text match. Hence,
we have to check the text area T [j − (starti − 1)− k : j + (m− starti) + k]
of length m+ 2k.

figure wird noch erstellt!!

Example

pattern: annual

text (T ): any_annealing

error (k): 2

Dividing: annual ⇒ p1 = an, p2 = nu, p3 = al

Searching: an in t⇒ pos 1, 5 (T = any_annealing)

nu in t⇒ pos None

al in t⇒ pos 9 (T = any_annealing)
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Verification: three occurrences in t⇒ 9, 10, 11

t[9] t[10] t[11]

annea- anneal anneali
annual annual annual-

Note that in the above example the number of verifications can be reduced
by one since the matches of an at position 5 and of al at position 9 are
triggering the same verification.

9.2.4 Problems

If the pattern does not match in a text, this will result in many verifications
which are unsuccessful. For example, searching for the pattern annual in

an_unusual_example_with_numerous_verification

where the pattern does not match. Furthermore, if the text is a repeated
region or contains one, repeated verifications will result. Problems like this
will increase the costs of verification and reduce the filter efficiency. To solve
this problem, we can use an alternative approach. Instead to verify the
entire pattern piece by piece, we can verify a short sub-pattern
which is less expensive. This is the idea of hierarchical verification.

9.2.5 Hierarchical verification

Figure 9: Balanced tree
with at most k = 3 errors.
The childs of each node have
to have at most k = bk

2
c er-

rors.

Instead to divide the pattern directly in k+1
pieces, we do it hierarchically. First, the pat-
tern is divided in two pieces and searched
for each piece with k = bk

2
c, following the

Lemma 9.1. Furthermore, the halves are re-
cursively split until the error rate reaches
zero. This has to be the case if we have
k + 1 leafs (Figure: 9.2.4 ). If we built the
tree, we can verify the pattern in a less ex-
pensive way, compared with the verification
introduced in 9.2.3.
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Figure 10: verification with balanced tree
1. find exact match of leafs within the text. 2. go from leafs to the rood so
long as the occurrence full fill the most accepted error in the node, else

reject the position in the text.

Table 1: Internal variables if k + 1 not power of two

variable description calculation

left number of pattern pieces in the left subtree d (k+1)
(2)
e

lk error of current node in the left subtree we look at b (left·k)
(k+1)

c

right number of pattern pieces in the right subtree k + 1− left

rk error of current node in the right subtree we look at b (right·k)
(k+1)

c

We have verify the pattern aaabbbcccddd in
the text xxxbbbxxxxxx, with the associated
balanced verification tree (9.2.4 ). In a first
step we search for one leaf that returns an exact match within the text. In
this case this is the pattern piece bbb. Instead to of verifying the tree root
(entire pattern), we verify a smaller sub-pattern. This sub-pattern is the
parent of the pattern piece we have found aaabbb. In this level of the tree
only one error is allowed, but the best match contains three errors. Hence
there is no possibility to extent the sub-pattern with at most one error and
we can reject the entire pattern.

What do we do, if the number of the k+ 1 pattern pieces are not a power of
two? In this case we try to build the tree as balanced as possible. Therefore
we introduce new internal variables shown in Table: 1.

example for hierarchical search with a not balanced tree If we want
to search the pattern of section 9.2.3 with this approach, we have to build
the tree as balanced as possible like in figure 9.2.5.
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CreateTree( p = pipi+1 . . . pj, k, myParent, idx, plen )
// Note: the initial call is: CreateTree ( p, k, nil, 0, bm/(k + 1)c )
Create new node node
from(node) = i
to(node) = j
left = d(k + 1)/2e
parent(node) = myParent
err(node) = k
if k = 0
then leafidx = node
else

lk = b(left · k)/(k + 1)c
CreateTree( pi . . . pi+left·plen−1, lk, node, idx, plen )
rk = b((k + 1− left) · k)/(k + 1)c
CreateTree( pi+left·plen . . . pj, rk, node, idx+ left, plen )

fi

The code depicted constructs the tree top down and and guarantees, that
the during the execution of the algorithm Lemma 9.1 holds if we choose the
factor of the lemma as computed in the pseudocode (lk and rk).

Figure 11: Tree as balanced as
possible
with at most k = 2 errors. The
children of each node have to
have at most k errors as de-
scribed in Table 1.

The search step is now an very intuitive step.
First we search for exact-matches in the leafs
and look in the parent of the leaf if we can
extend the match to a sub-pattern with at
most k errors. We do this until we reach the
end of the text and reject each possible oc-
currence if the actual condition of the most
accepted error in the node is not full fill. An
example is given in Table 2.

pattern = annual

text = any_annealing

k = 2

31



Table 2: searching with an tree 9.2.5 balanced as possible

1. Found an_yannealing

Search for "annu" with k = 1
inside any_annealing
failed abort the verification and reject the position of the text
2. Found an_y annealing

Search for "annu" with k = 1
inside any_annealing
found condition full fill go upper in the tree

Search for "annual" with k = 2
inside any_annealing
found report position 9,10,11 like in 9.2.3
3. Found an_yannealing

Search for "annual" with k = 2
inside any_annealing
found end of text abort search an report results (position 9,10,11)
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9.3 Q-Gram-Counting based approaches

9.3.1 Basics

Given a sequence S, a q-gram is any sub-sequence of length q (also referred
to as k-mer, where k is the length).

For two sequences S1, S2 of equal length the set of common q-grams is the
set of overlapping sub-sequences of length q.

Lemma 9.2 (Q-Gram-Lemma). Two sequences S1, S2 of length l and edit
distance ≤ k share at least t = l − kq − q + 1 common q-grams.

The q-gram-lemma is based on these two observations:

1) one sequence of length l contains l − q + 1 overlapping q-grams

2) every mismatch can destroy at most q q-grams
→ k mismatches destroy at most kq q-grams

9.3.2 QUASAR

QUASAR stands for “Q[u]-gramAlignment based on SuffixARrays” (TODO
cite). It is a tool that computes approximate local matches based on q-gram
counting and the q-gram-lemma. An approximate local match is defined as a
region of a certain minimal length on two sequences with edit distance ≤ k.

Important: Since we deal with Read-Mapping we only consider semi-
global alignments, not local alignments. The theory behind QUASAR ex-
plained in the following is therefore reduced to the special case of semi-global
alignments.
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Figure 12: Q-gram counting (D = Database, R = Read)

Overview of the QUASAR pipeline:

1) Index: create a q-gram-index pointing into a suffix array for constant
time lookup of all q-frams of the D.

2) Blocks: divide genome into non-overlapping blocks (buckets) and define
a counter per block

3) Counting: lookup all q-grams of R in the index, retrieve the positions
from the suffix array and increment the corresponding counters

4) Threshold: all blocks with counter ≥ t are remembered for verification

The last two steps are repeated for every read. It is remembered for which
read(s) a block’s threshold is exceeded (a block is only verified for those).
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Figure 13: Q-gram index

1) Index For constant-time lookups a q-gram-index is constructed. The
table of all q-grams in all reads is created which needs space O(| Σ |q) and the
position of all exact matches for all q-grams is recorded. This can be achieved
by pointing to the corresponding position in a suffix array. as shown in fig.13.

2) Blocking A trivial approach to counting would be to look at all (over-
lapping) sub-strings of length of the read (+k in case we allow gaps) in D
and count the amount of matching q-grams. This would however require

D− R + 1 counters

→ very memory expensive.

Alternatively you can devide the genome into non-overlapping buckets, called
blocks and keep one counter for each. To not miss out on the approx. matches
spanning a block border we introduce a second row of shifted blocks and

increase the length to b ≥ 2 ∗ (R + k). This results in
| D |
b

counters.

You should always keep in mind, though, that a larger block results in worse
specificity!

3) Counting lookup all q-grams in R, retrieve the positions from the suffix
array, and increment corresponding counters.

4) Threshold all blocks with counter ≥ t are remembered for verification
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9.3.3 Gapped Q-Grams

Motivation Based on the previously discussed theory it should be evident
that a larger q results in less random hits and therefore a higher filtration
rate (which is desirable). However it also results in a lower threshold which
counteracts this effect.

A possible improvement is the use of gapped q-grams, which provide a higher
filtration rate while maintaining high thresholds.

Definition While the formal definition of gapped q-grams / shapes is more
extensive, the following terms should be understood:

Example:
##.#..#

shape Q set of N0, positions of # {0, 1, 3, 6}
size of Q: Q “number” of # 4
span of Q: s(Q) “number” of #,. 7

Shapes consist of positions that are verified (“#”) and positions that are not
verified, the gaps(“ .”). Note that this does not imply a mismatch at the “.s”,
it just allows for a mismatch at this position (without rejecting the q-gram-
match).

Thresholds The q-gram lemma can be generalised to gapped q-grams:

t = w − s(Q)− Qk + 1

However it is not tight anymore, i.e. you can still expect to see at least t
q-grams, but in many situations you can provably expect more.

Consider these two shapes and compute their thresholds:

shape ### ##.#

t = 11− 3− 3 ∗ 3 + 1 = 0 11− 4− 3 ∗ 3 + 1 = −1

w = 11
k = 3

Obviously both shapes seem useless (t ≤ 0).
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Now let us experimentally determine the worst possible placement of errors:

shape ### ##.# w = 11
k = 3

As we can see t = 1 for ##.#! This shows that the q-gram-lemma is not
tight anymore, as well as showing that gapped shapes are often superior to
ungapped shapes of equal size.

Minumum Coverage There is another intricacy when using gapped q-
grams. Consider the shapes ### and ##.# for w = 13 and k = 3.

In both cases t = 2, but for ### four consecutive matches suffice to reach
this treshold, while ##.# requires five consecutive matches. The number of
characters that have to match for a shape q to reach a threshold of t is called
the minimum coverage of q at threshold t.

Obviously a higher minimum coverage increases the filter specificity.

Summary

• Gapped Q-grams improve the filter efficiency by magnitudes
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• placement of gaps in the Q-gram influences threshold and minimum
coverage

• threshold and minimum coverage both influence filter efficiency

• there is no closed formula known for computing the threshold of gapped
Q-grams (the Q-Gram Lemma is only a lower bound)

9.3.4 Verification

Verification, in approaches that use q-gram-counting, is completely indepen-
dent of the filtering step. It can be performed after all candidate regions
have been identified (QUASAR), or “on-the-fly” (RazerS).

The algorithms employed range from traditional heuristic approaches, like
BLAST (QUASAR) to specialised DP-based algorithms like Myers Bitvector
algorithm (RazerS). When using hamming distance, scoring is trivial (count
mismatches along the diagonal).

Classical DP-Approaches

• Needleman-Wunsch for global alignments, Smith-Waterman for local
alignments.

• semi-global by setting only first row (not first column) to 0

• both use O(nm) space and run-time.

• by only remembering the last column and doing a backtrace later, we
can reduce space-requirement to O(m) (Hirschberg)

Ukkonen’s algorithm

• observation that each cell’s value differs {−1, 0,+1} from its neigh-
bours’

• based on that you can quickly realise when a value will never become
“good” again in a column (once it has reached k + 1 ) and stop there

• this results in something similar to a banded alignment

• run-time O(km)
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Myers Bitvector algorithm

• do not save absolute values in the DP, but the differences to above cell
(∈ {−1, 0,+1})

• columns then encoded as bit-vectors

• dependencies/relation of cells are encoded as bit-operations (AND, OR,
OR NOT)

• columns are computed by bit-shifting similar to Shift-Or algorithm

• depending on read length a complete column maybe calculated simul-
taneously

Figure 14: V-Table of Myers Bitvector DP

9.4 Summary

In this section I will emphasize what techniques and arguments are central
to this part of the lecture in form of questions to which you should be able
to answer.

• Pidgeonhole principle

– Can you explain the general version of the pidgeonhole principle?

– Can you argue why choice of the k in each level of the PEX algo-
rithm is correct?

– Can you explain why a balanced tree is better than an unbalanced
tree in the hierarchical verification?
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– In the hierarchical verification an exact match triggers a verifica-
tion in the level above. Can different exact matches trigger the
same verification? How can this be avoided?

• q-gram counting

– Describe the data structures used in the Quasar q-gram counting
approach.

– Is the use of a suffix array really necessary? What else could be
done?

– Be able to prove the q-gram lemma.

• gapped q-grams

– Why is the q-gram lemma for not tight any more for gapped
shapes?

– Given two shapes with the same threshold for some given param-
eters. What other criteria can you use to prefer one to the other?
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10 Locating

In RNA-Seq as well as in DNA-Seq reads can potentially map to several
locations, these reads are called multi-reads. The question if obviously, where
in the genome they really stem from. A possible strategy to resolve this
question is to map multi-reads to all possible locations. If similar reads
from different locations differ slightly, then the idea is to cluster reads from
the same regions. The clustering can be done by grouping reads that share
common differences to other groups of reads.

Assume now that we have mapped every read to all possible locations. Ob-
viously this gives us also the information where multiple reads map (a region
to which at least two reads map that map also to another location).

11 Bounding

Now we want to compute a multiple alignment of the reads in repeat regions
to analyze and separate them using correlated differences. To compute a mul-
tiple alignment we need well defined boundaries of the fragments. All these
fragments also have to have the same length, since the separation procedure
described in section 13 uses hamming distance between fragments that are
computed over the rows of the alignment, and these distances will be biased
if fragments with different lengths are considered.

Hence, choosing a wide window will reduce the number of fragments it can
contain. Choosing a deep window containing many fragments will be narrow
and is unlikely to have enough distinguishing base sites, while a wide window
containing many such sites will be shallow and not allow us to separate many
fragments.
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Figure 15: Schematic view of analyzed overlaps in a multi-alignment.

11.1 Finding an optimal window

We consider as an optimal window a representative window that is feasible
and has maximum depth. A representative window is a widest window of a
given depth, where the width of a window is the length of the intersection of
the layout intervals of its fragment.

Let d be the depth of the layout at the location where we want to com-
pute an optimal window. To find an optimal window, we will compute a
representative window of depth d, d − 1, d − 2, . . . until we find one that is
feasible.

One way of doing this (ref tammi) (see fig. ??) is to chose one read out of
a repeat region and use it as a starting read to elongate from. All reads
aligning to this starting read (1st-order) will form a contig and will be the
area analyzed in section 12 and 13. The reads then aligning again with the
1st-order reads (2nd-order) will be used as new starting reads. And the
process is repeated until all reads in the data set have been analyzed.
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12 Identifying DNPs

After computing the multi-alignment of read sequences the next step is to
find all the positions of alignment columns, which contain mismatches and
therefore are useful to distinguish between repeat copies in the following
separating step. In this chapter the identification of the so called ‘defined
nucleotide positions’ (DNPs) with the algorithm by Tammi et. al. QUOTE!
will be described. Although Tammi et. al. developed their algorithm for the
assembly problem of whole genome shotgun sequencing data, this algorithm
can be also applied to RNA sequencing.

12.1 Idea of Tammi’s algorithm

First the algorithm looks for all alignment columns, which contain ≥ Dmin

non-consensus bases (deviations) and therefore are potential DNPs. In whole
genome shotgun sequencing the most frequent base in an alignment column
is assumed as the consensus base (in this chapter columns denote alignment
columns). Since the results have shown that only one DNP is not enough to
separate the repeat copies, a second, support column is needed (see Fig. 16).

Figure 16: Example of two DNPs (blue columns) with Dmin = 2 in an multi-
alignment. The first blue column has 3 deviating bases of type C. The second
blue column is the supporting column with 2 deviating bases of type A.

In the basic method the algorithm searches for all DNP pairs with ≥ Dmin

deviations which coincide in the same rows of the multi-alignment. The
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extended method computes the probability of those observed coincidences
and checks, whether the deviations occurred by chance or not.

12.1.1 Mathematical definitions

Let u, v be two fixed positions in the multi-alignment M , then all the defi-
nitions for u also hold for v. The base at column u in jth sequence is au,j.
If this base au,j deviates from consensus, then the indicator variable Iu,j = 1
and Iu,j = 0 otherwise. The probability for a deviation (error rate) at u in j
is pu,j = P (Iu,j = 1). The total number of deviations at u is determined by
Nu =

∑k
j=1 Iu,j, where k is the number of rows in M . Ij indicates the coin-

cidences in j: Ij = Iu,jIv,j. Ij = 1 if there are deviations at both positions in
j and Ij = 0 otherwise. Finally the total number of coincidences is defined
as C =

∑k
j=1 Ij =

∑k
j=1 Iu,jIv,j.

As we can see no formula contains pu,j yet, that is to say the quality values
of the base calling is neglected. Therefore there are two approaches how
to handle the error rates. The first assumes an independent and identically
distributed error rate, whereas the second includes non-iid error rates.

12.2 Approach with iid error rates

Assume the deviations are iid, which is not always true, then it holds pu,1 =
... = pu,k, pv,1 = ... = pv,k.
Because of this, we can use the hypergeometric distribution that determines
the probability for a given number of successes in n draws from a finite pop-
ulation without replacement.

In a toy example this means we have in a bucket in total N balls consisting
of M white balls and the rest N −M balls are black. Now we draw n balls
without returning any balls out of the bucket, then the probability for draw-
ing x white balls out of the n draws is:

Px(N,M, n) =
(Mx )(N−M

n−x )
(Nn)

,

where
(
M
x

)
is the number of combinations to draw x white balls out of max-

imal M white balls and
(
N−M
n−x

)
the number of combinations to draw n − x

black balls out of maximal N −M black balls. Moreover
(
N
n

)
is in the de-

nominator, because all the combinations of drawing with returning are left
out.
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Analogously we derive the distribution C given Nu = nu, Nv = nv as:

P (C = x) =
(nvx )(k−nvnu−x)

( k
nu

)
,

0 ≤ x ≤ nv, 0 ≤ nu − x ≤ k − nv

obacht:
grafik
ergänzen
(Dang)The k balls represent bases in v where the nv deviating bases represent white

and the k−nv non-deviating bases represent black balls. For every of the nu
deviating bases in u we draw a ball and want to to determine the probability
that there are x coincidences (white balls).

In reality the deviations do not occur iid therefore the non-iid approach is
needed.

12.3 Approach with non-iid error rates

With different error rates computing the expectation value of C using the
hypergeometric distribution will be complicated, since the formula is split
into many different terms, because each deviation has a separate probability
(pu,i). Yet, assuming the probabilities of the deviations are different, but very
small, then we can use the Poisson distribution and our goal is to compute
the mean E(C | Nu = nu, Nv = nv) of it. For calculating the conditional
probability the Poisson distribution still approximates well, since the condi-
tioning on Nu and Nv introduces weak dependencies.

From the definition of the number of coincidences C =
∑k

j=1 Iu,jIv,j
follows:

E(C | Nu = nu, Nv = nv) =
∑k

j=1E(Iu,j = 1 | Nu = nu)E(Iv,j = 1 | Nv = nv)

and from the definition of conditional probability (Bayes’ theorem) follows:

P (Iu,j = 1 | Nu = nu) =
P (Iu,j=1,Nu=nu)

P (Nu=nu)
=

P (Iu,j=1,N
(j)
u =nu−1)

P (Iu,j=1,N
(j)
u =nu−1)+P (Iu,j=0,N

(j)
u =nu)

,

where N (j)
u = Nu − Iu,j is the number of deviations at column u without

the sequence j.
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Because Iu,j, N
(j)
u are independent, Nu, N

(j)
u are Poisson distributed and

λu =
∑

i=1 pu,i and λ
(j)
u = λu − pu,j, respectively this formula holds:

P (Iu,j=1,N
(j)
u =nu−1)

P (Iu,j=1,N
(j)
u =nu−1)+P (Iu,j=0,N

(j)
u =nu)

≈

pu,je
−λ(j)u λ

(j)nu−1

u /(nu−1)!

pu,je−λ
(j)
u λ

(j)nu−1
u /(nu−1)!+(1−pu,j)e−λ

(j)
u λ

(j)nu−1
u /nu!

=
nupu,je

−λ(j)u λ
(j)nu−1

u/////////////////nu!///

nupu,je−λ
(j)
u λ

(j)nu−1
u/////////////////nu!///+(1−pu,j)e−λ

(j)
u λ

(j)nu
u//////////////nu!/// =

nupu,j

nupu,j+λ
(j)
u (1−pu,j)

The formula for P (Iv,j = 1 | Nv = nv) for column v is applied analogously
and we get

E(C | Nu = nu, Nv = nv) ≈
∑k

j=1 (
nupu,j

nupu,j+λ
(j)
u (1−pu,j)

· nvpv,j

nvpv,j+λ
(j)
v (1−pv,j)

) .

12.3.1 Testing of the Poisson distribution

With the Poisson distribution, which approximates the distribution of C
given Nu = nu, Nv = nv we can test the supposed hypothesis that coin-
cidences occur by chance. Therefore we calculate the probability pcorr to
observe cobs or more coincidences by chance:

pcorr = 1−
∑cobs−1

i=0 Po(i).

Po(i) is the probability for the Poisson variable with the mean E(C | Nu =
nu, Nv = nv). The hypothesis is accepted, if pcorr > pcorrmax a given threshold.
The special case for columns with lots of expected sequencing error Tammi
et. al. introduce correction strategy not explained here.
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13 Separating repeat copies

After DNP identifying, the algorithm of Kececioglu[? ] can be used to sepa-
rate the reads into groups. Afterwards each group should contain the reads
of one repeat copy.
The algorithm assumes that the multi alignment can be split into k copies
of the repeat. The idea is the following:
There exists a partition into k classes P1, P2, . . . , Pk. For each class a con-
sensus string S1, S2, ..., Sk can be defined such that the sum of errors

∑
1≤i≤k

∑
F∈Pi D(F, Si)

between a Si and all the other reads of Pi is minimal.

13.1 Constructing a graph theoretical problem

The described problem can be formulated as a graph theoretical problem.
We consider the Kn (the complete directed graph with n nodes) and weight
the edges. Nodes represent reads and edges represent overlaps between two
reads. Each edge is weighted with the Hamming distance of the two reads
and can be labeled with the number of the first and the second read. The
following figure shows Kn for 3 reads (the weights are not visualized).
Now we want to find k star centers and an edge set that spans all nodes such
that the overall weight of all chosen edges is minimized. This problem is also
called the k-star problem.
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13.2 Formulation as an ILP

The k-star problem can be formulated as an ILP. For a givenKn the following
variables are needed.

• xij

xij is the variable for the edge between node i and j (the pairs are
ordered). This variable encodes if the edge is part of a k-star or
not. For n nodes there exists n2 x-variables.

• yi

yi is the variable for each node i. It encodes if the node is a center
of a star. For n nodes there exists n y-variables.

The ILP tries to find a partition into k groups that minimize

∑
1≤i≤k

minF∗∈Pi

{ ∑
F∈Pi

H(F, F ∗)

}
F ∗ is the consensus sequence for one class Pi. For all the other reads F
of Pi the Hamming distance is computed. In Kn the weight of the edges
correspond to the Hamming distances.
The objective function of the ILP is formulated as

min
∑

i 6=jwijxij

The ILP has 3n2 + 3n+ 1 constraints:

• ∀i ∀j xij ≥ 0

Decides if an edge is part of a k-star or not.

xij =

{
1, edge is part of a k-star
0, otherwise

• ∀i yi ≥ 0

Decides if a node is a center of a k-star or not.

yi =

{
1, node is a center of a k-star
0, otherwise
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• ∀j,
∑

1≤i≤n
xij ≥ 1

Each node must have one incoming edge.

• ∀i ∀j yi ≥ xij

Only the star centers have outgoing edges.

•
∑

1≤i≤n
yi ≤ k

There are at most k star centers.

13.2.1 Example

The figure shows an example for a Kn. The red edges show one possible
solution. The formulated ILP is as follows:
Objective function:

min x12 + 2x13 + x21 + 2x23 + 2x31 + 2x32

Constraints:
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∀i ∀j, xij ≥ 0 x11 = 0, x12 = 0, x13 = 0, x21 = 1, x22 = 1, x23 =
1, x31 = 0, x32 = 0, x33 = 0

∀i, yi ≥ 0 y1 = 0, y2 = 1, y3 = 0

∀j,
∑

1≤i≤n
xij ≥ 1 x11 + x21 + x31 = 0 + 1 + 0 = 1,

x12 + x22 + x32 = 0 + 1 + 0 = 1,
x13 + x23 + x33 = 0 + 1 + 0 = 1

∀i ∀j, yi ≥ xij y1 = 0 = x11, y1 = 0 = x12, y1 = 0 = x13,
y2 = 1 = x21, y2 = 1 = x22, y2 = 1 = x23,
y3 = 0 = x31, y3 = 0 = x32, y3 = 0 = x33∑

1≤i≤n
yi ≤ k y1 + y2 + y3 = 0 + 1 + 0 = 1 = k

13.2.2 Solving the ILP

The ILP is solved by using LP relaxation and branch-and-bound. If the so-
lution is still not integral a rounding method described by Kececioglu should
be used.
A Kn and a fractional solution is given. For all fractional yi’s the average of
the weights of the adjacent edges can be computed:

ai =
∑

j:xij>0

wij
|{j:xij>0}|

The yi with the highest solution is assigned as a center of a star graph.
Finally the solution defines the k star graphs that could be found in Kn. The
hope is, that each star graph contains the reads from one repeat copy.

13.3 Summary

In this section I will emphasize what techniques and arguments are central
to this part of the lecture in form of questions to which you should be able
to answer.

• Finding DNPs

50



– What are DNPs and what are they used for?

– How can you find DNPs?

– What is the probability to observe x coincidences between 2 columns
with nu and nv deviations and k rows in total? Assume i.i.d. de-
viation probabilities.

• Separating repeat copies (aka grouping reads)

– What is the k-star problem?

– How can it be applied to separate multi-reads?

– Formulate an ILP to solve it. How can the ILP be solved?

• Putting it all together

– Describe the iterative process to separate multi-reads of an RNA-
Seq dataset.
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