
13 Comparative RNA analysis

Sources for this lecture:

• R. Durbin, S. Eddy, A. Krogh und G. Mitchison, Biological sequence analysis, Cambridge, 1998

• D.W. Mount. Bioinformatics: Sequences and Genome analysis, 2001.

• V. Bafna, S. Muthukrishnan, R. Ravi, Computing similarity between RNA strings.

• D. Sankoff, Simultaneous solution of the RNA Folding , Alignment and Protosequence Problems, SIAM
Journal of Appl. Math., 45,5,1985

• J. Gorodkin, L.J. Heyer, S. Brunak, G.D. Stormo, Displaying the information contents of structural RNA
alignments: the structure logos.

The algorithms of Nussinov and Zuker try to compute the best RNA folding by optimizing certain objective
functions like the Gibbs free energy or the number of base pairs to compute the best fold.

Another successful approach is based on the comparison of sequence structure of RNA. While this is
different to (primary) sequence analysis, the main tasks are the same.

In the below figure you see on the right two RNA alignments. One has a rather high sequence conservation
but does not preserve the secondary structure, while the second preserves the structure and not sequence.

The problem in RNA comparison is to capture the structure conservation and possibly also the sequence
conservation.

interactions alignment with high alignment with high
sequence score interaction score

13.1 RNA folding via comparative analysis

Although energy minimization techniques are attractive, almost all trusted RNA secondary structures to date
were determined using comparative analysis. However, comparative methods require many diverse sequences
and highly accurate multiple alignments to work well.
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The key idea is to identify the interactions (that is the Watson-Crick correlated positions) in a multiple
alignment, e.g.:

seq1 GCCUUCGGGC
seq2 GACUUCGGUC
seq3 GGCUUCGGCC

Assume for now that we are given a multiple alignment. The amount of correlation of two positions can
then be computed as the mutual information content measure: if you tell me the identity of position i, how much do I
learn about the identity of position j?

13.2 Mutual information content

A method used to locate covariant positions in a multiple sequence alignment is the mutual information content
of two columns.

First, for each column i of the alignment, the frequency fi(x) of each base x ∈ {A, C, G, U} is calculated.

Second, the 16 joint frequencies fi j(x, y) of two nucleotides, x in column i and y in column j, are calculated.

If the base frequencies of any two columns i and j are independent of each other, then the ratio of
fi j(x,y)

fi(x)× f j(y) ≈ 1.

If these frequencies are correlated, then this ratio will be greater than 1.

To calculate the mutual information content H(i, j) in bits between the two columns i and j, the logarithm of
this ratio is calculated and summed over all possible 16 base-pair combinations:

Hi j =

∑

xy

fi j(x, y) log2

fi j(x, y)

fi(x) f j(y)
.

This measure is maximum at 2 bits, representing perfect correlation.

If either site is conserved, there is less mutual information: for example, if all bases at site i are A, then the
mutual information is 0, even if site j is always U, because there is no covariance.

The main problem with the comparative approach is that we need an accurate multiple alignment to get good
structures and we need accurate structures to get a good alignment!

Examples of how to compute the mutual information content:

1 2 3 4 5 6 7 8

C G C G A U A A

C G G C C G C C

C G C G G C G G

C G G C U A U U

Compute:

H12 =

H34 =

H56 =

H78 =

The above example illustrates, that the mutual information a given in the above formula is a general
concept that not only captures the correlation between Watson crick pairs (columns 5 and 6), but also others
(columns 7 and 8).
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If we are only interested in the correlation of Watson crick pairs, Gorodkin suggested a slight modification
to the above measure. In addition he proposed a method to display this information as a sequence-structure
logo.

Recall, that for primary sequences over the alphabet A = {A,C,G,U,−} the information content of position
i of an alignment is:

Ii =

∑

k∈A

Iik =

∑

k∈A

qik log2

qik

pk

where qik is the fraction of ’base’ k at position i. For k ,′ −′ we interpret pk as the a priori distribution of the
bases for that genome. (This is an extension of the Schneider logos proposed by Hertz and Stormo).

Having determined Ii for a position, there are two common ways to display the height dik for each letter:

1. dik = qik · Ii (type 1 logo), the height is proportional to the frequency.

2. dik =
qik/pk
∑

l qil/pl
· Ii (type 2 logo), the height is in proportion to the their frequencies relative to the expected

frequencies.

(0.25, 0.25, 0.25, 0.25) (0.4, 0.4, 0.1, 0.1)

t1

t2

Gorodkin proposed now the following: Define q̃i j to be the fraction of sequences that have complementary
base pairs at positions i and j. Then the expected value of q̃i j is E(q̃i j) =

∑

(k,l)∈B Ckl · qik · q jl, where B = (A \ {−})2,
and Ckl is a symmetrical matrix with Ckl = 1 if the base pairs k and l are complementary and 0 otherwise.

Then he defines the mutual information as the log likelihood ratio of the observed to expected frequency
of complementary bases (Kullback-Leibler distance between two distributions), namely:

Mi j = q̃i j log2

q̃i j

E(q̃i j)
+ (1 − q̃i j) log2

1 − q̃i j

1 − E(q̃i j)
.
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The mutual information between two positions is symmetrical. Hence we define Mi = M j = Mi j/2 and
display the amount in the sequence logo as a ’M’.

Consider the following alignment:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C A A C A G C A G A A G A A U

C A C G A C G A C C A A C A G

C A G C A C C A G G A C G A C

C A U G A G G A C U A U U A A

This results in the following sequence logo (ignore the ’U’s they are necessary because of a bug in the
program):

13.3 RNA sequence structure alignment

Denote with Σ̂ the alphabet extended with a gap character.

Definition 1. Let S be a sequence over Σ̂ with length m. A pair (i, j) with 1 ≤ i < j ≤ m is called interaction if
si , ’-’ and s j , ’-’. A set P of interactions is called annotation of S. Two interactions (i, j), (k, l) in an annotation
are in conflict if i = k or i = l or j = k or j = l. A (secondary) structure is an annotation with no two interactions in
conflict. If S is a sequence and P an annotation we call the pair (S,P) an annotated sequence. If P is a (secondary)
structure we call it a structured sequence.

According to the definition the below figures shows one structured sequence and one annotated sequence
together with two possible structural alignments
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interactions alignment with high alignment with high
sequence score interaction score

Definition 2. Let Σ be a finite alphabet without the blank character ’-’ and let Σ̂ = Σ∪{’-’}. If (S1,P1), . . . , (Sk,Pk)
are k annotated sequences ∈ Σ∗with lengths n1, . . . ,nk then a multiple structural alignment A of (S1,P1), . . . , (Sk,Pk)

is a k × n–dimensional matrix consisting of k structured sequences (Ŝ1, P̂1), . . . , (Ŝk, P̂k) with the following
properties:

1) ai, j ∈ Σ̂ ∀ 1 ≤ i ≤ k, 1 ≤ j ≤ n and sequence Ŝi gives sequence Si if the blanks are removed.

2) There is no column consisting only of blank characters implying max{n1, . . . ,nk} ≤ n ≤
∑k

i=1 ni.

3) ∀(l,m) ∈ P̂i the following holds (l − gaps(i, l),m − gaps(i,m)) ∈ Pi.

where
gaps(i, j) =| {l < j | ai,l = ’-’} | .

13.4 Scoring structural alignments

Denote a structural alignment of k annotated sequences (S1,P1), . . . , (Sk,Pk) with As((S1,P1), . . . , (Sk,Pk)), the set
of all structural alignments of (S1,P1), . . . , (Sk,Pk) with Ak

s((S1,P1), . . . , (Sk,Pk)) , and the set of all alignments
between any k annotated sequences withAk

s . Define a structural alignment score function and the optimal structural
alignment score as follows.

Definition 3 (structural alignment score). A function sc : Ak
s → R is called structural alignment score func-

tion. If As is a structural alignment of k annotated sequences, then sc(As) is called structural alignment
score of As. The optimal structural alignment score of k annotated sequences (S1,P1), . . . , (Sk,Pk) is defined as
scopt((S1,P1), . . . , (Sk,Pk)) := maxAs∈A

k
s ((S1,P1),...,(Sk ,Pk)) sc(As).

The following structural alignment score function rna : A2
s → R could be used to identify alignments that

have both, high sequence and high structure conservation:

rna(As) =

n
∑

i=1

sim(a1,i, a2,i) +
∑

( j,l)∈P̂1,(q,r)∈P̂2

(q,r)=( j,l)

isim(a1, j, a1,l, a2,q, a2,r).

The above function assigns a high score not only to alignments with many matching characters in the sequence
but also to alignments that show few such matches but many interaction matches. If we score a character match
with 1 and an interaction match with 3, the second alignment above would be scored higher (score 10) than
the first (score 8). It is clear that such a score could be used to define a score for a multiple alignment.
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13.5 Computing structural alignments

Assume that we are given two annotated sequences (S1,P1) and (S2,P2) together with the structural alignment
score function rna.

The goal is to compute an optimal structural alignment with respect to rna.

We will consider the case in which no pseudoknots are allowed in the secondary structures of structured
sequences.

We present an general algorithm for annotated sequences. The running time will depend on whether the
annotations are structures or not.

13.6 Computing structural alignments

We use a four-dimensional array A to record the value of solutions of subproblems. The entry A[i1, j1, i2, j2]
contains the score of an optimal structural alignment between the annotated sequences (S1,[i1: j1],P1,[i1: j1]) and
(S2,[i2: j2],P2,[i2: j2]) where Pi,[ j:k] is the set of all interaction (x, y) ∈ P with j ≤ x < y ≤ k. Hence A[1,n1, 1,n2]
contains the score of the optimal structural alignment between (S1,P1) and (S2,P2).

We fill the fourdimensional matrix for intervals of increasing widths.

1. The score of aligning an empty infix of (S1,P1) with an empty infix of (S2,P2) is zero. Hence A[i1, j1, i2, j2] =
0 for all quadruples (i1, j1, i2, j2) with j1 < i1 and j2 < i2.

2. Aligning an empty infix of (S1,P1) with an nonempty infix of (S2,P2) yields as score the sum of all insertion
scores for the infix of the second sequence, i. e., A[i1, j1, i2, j2] =

∑

i2≤k≤ j2 sim(’-’, s2,k) for all quadruples
(i1, j1, i2, j2) with j1 < i1 and j2 ≥ i2.

3. Aligning an empty infix of (S2,P2) with an nonempty infix of (S1,P1) yields as score the sum of all deletion
scores for the infix of the second sequence, i. e., A[i1, j1, i2, j2] =

∑

i1≤k≤ j1 sim(s1,k, ’-’) for all quadruples
(i1, j1, i2, j2) with j2 < i2 and j1 ≥ i1.

Assume now that we do not allow any pseudoknots, then the following recurrences hold:

Â[i1, j1, i2, j2] = max
{

A[i1, j1 − 1, i2, j2] + sim(s1, j1 , ’-’),

A[i1, j1, i2, j2 − 1] + sim(’-’, s2, j2 ),

A[i1, j1 − 1, i2, j2 − 1] + sim(s1, j1 , s2, j2 )
}

(13.1)

and, for all k1 ≥ i1, k2 ≥ i2 such that (k1, j1) ∈ P1 and (k2, j2) ∈ P2

A[i1, j1, i2, j2] = max
{

Â[i1, j1, i2, j2],

A[i1, k1 − 1, i2, k2 − 1]

+ A[k1 + 1, j1 − 1, k2 + 1, j2 − 1]

+ sim(s1,k1
, s2,k2

) + sim(s1, j1 , s2, j2 )

+ isim(s1,k1
, s1, j1 , s2,k2

, s2, j2 )
}

(13.2)

The intervals must be computed in increasing order of width. For example in this lexicographical order
(i1, j1, i2, j2) = (1, 2, 1, 2),(1, 2, 2, 3),. . .,(1, 2,n2 − 1,n2),(2, 3, 1, 2),. . ..



13006 Comparative RNA analysis, by Knut Reinert, January 16, 2012, 09:11

Part (??) of the above recurrence computes similarly to sequence alignment all possibilities of extending
the primary sequence to the right.

Part (2) is new. Basically, whenever we encounter a potential right end ( j1, j2) of an interaction match, we
check for all possibilities within [i1, j1] and [i2, j2] to be the left end of the interaction match.

How many such possibilities exist depends on whether P1 and P2 are an annotation or a structure.

case 1 case 2 case 3 case 4

i1 i1 i1 i1j1 j1 j1

j2i2 i2 i2 i2j2 j2 j2

1. P1 is a structure and P2 is a structure.
That means there is only one possible interaction match.

2. P1 is a structure and P2 is not a structure.
That means there are O(n2) possible interaction matches.

3. P1 is not a structure and P2 is a structure.
That means there are O(n1) possible interaction matches.

4. P1 is a not structure and P2 is not a structure.
That means there are O(n1 · n2) possible interaction matches.

Theorem 4. Assume that we are given two annotated sequences (S1,P1) and (S2,P2) together with the structural
alignment score function rna. The above recurrences and the initializations compute an optimal structural alignment not
containing pseudoknots with respect to rna.

Proof: exercise. Hint: use structural induction.

Theorem 5. The described algorithm needs space O(n2
1
·n2

2
) and time O(n2

1
·n2

2
), O(n2

1
·n3

2
) (or O(n3

1
·n2

2
)), and O(n3

1
·n3

2
)

for the case of P1 and P2 being structures, exactly one of P1 or P2 being a structure, and P1 and P2 being an annotation
respectively.

Proof: In part (2) of the recurrence we have to consider all possible cases with j1, j2 being the right match of an
interaction match, and the left match of the interaction match lying in the current interval. For P1 and P2 being
a structure, only one such left match is possible. Hence the step takes constant time. For the other cases the
step takes O(n1) (or O(n2)) time and O(n1 · n2) time. Since this is executed for each cell of the four-dimensional
array, the time bounds follow.

13.7 Improving the run time

Intuitively the described algorithm is not optimal. Given the right match of an interaction match, we check for
its left match for each interval that ends with the right match. for the structure–structure case this does not hurt
so much, since it is only a constant overhead. However, when one of P1 and P2 is an annotation we pay dearly
for this.

We will now consider the case where one annotation (w.l.o.g P1) is a structure and the other an annotation.
Then we will make some modifications to the recurrences that will reduce the running time from O(n2

1
· n3

2
) to

O(n2
1
· n2

2
) +O(n1 · n

3
2
).

The first step to make is to binarize the tree representation of P1. That means we add to P1 a set of artificial
interactions resulting in a set P′ as follows:
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(1) Binarize(i, j);
(2) (i, j) ∈ P1 has k children {(i1, j1), . . . , (ik, jk)};
(3) for 1 ≤ u ≤ k do
(4) Binarize(iu, ju);
(5) P′ = P′ ∪ {(i1, ju)};
(6) if u > 1 then
(7) parent((i1, ju−1)) = (i1, ju);
(8) parent((iu, ju)) = (i1, ju);
(9) fi

(10) od
(11) parent((i1, jk)) = (i, j);

The for-loop of the above algorithm is called for the list of all the visible intervals.

Consider the following example in mountain notation:

=======

============= ======= =======

G A C A G U U C A C G G C

1 2 3 4 5 6 7 8 9 10 11 12 13

after binarize:

=======

============= ======= =======

----------------------

-------------------------------

G A C A G U U C A C G G C

1 2 3 4 5 6 7 8 9 10 11 12 13

’children’ (2, 6), (7, 9), (10, 12).

• u = 1:
Binarize(2,6);
P′ = P′ ∪ {(2, 6)};

• u = 2:
Binarize(7,9);
P′ = P′ ∪ {(2, 9)};
parent((2,6))=parent((7,9))=(2,9);

• u = 3:
Binarize(10,12);
P′ = P′ ∪ {(2, 12)};
parent((2,9))=parent((10,12))=(2,12);

Binarize(2,6), children (3, 5).

• u = 1:
Binarize(3,5);
P′ = P′ ∪ {(3, 5)};
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parent((3,5))=(2,6);

So in the end P′ = {(3, 5), (2, 6), (2, 9), (2, 12)}.

Then the new recurrence reads as follows with identical initializations:

Â[i1, j1, i2, j2] = max
{

A[i1 + 1, j1, i2, j2] + sim(s1,i1 , ’-’),

A[i1, j1, i2 + 1, j2] + sim(’-’, s2,i2 ),

A[i1 + 1, j1, i2 + 1, j2] + sim(s1,i1 , s2,i2 ),

A[i1, j1 − 1, i2, j2] + sim(s1, j1 , ’-’),

A[i1, j1, i2, j2 − 1] + sim(’-’, s2, j2 ),

A[i1, j1 − 1, i2, j2 − 1] + sim(s1, j1 , s2, j2 )
}

(13.3)

and, if (i1, j1) ∈ P1 and (i2, j2) ∈ P2

A[i1, j1, i2, j2] = max
{

Â[i1, j1, i2, j2],

A[i1 + 1, j1 − 1, i2 + 1, j2 − 1]

+ sim(s1,i1 , s2,i2 ) + sim(s1, j1 , s2, j2 )

+ isim(s1,i1 , s1, j1 , s2,i2 , s2, j2 )
}

(13.4)

and, if (i1, j1) ∈ P′ \ P1 and (k, j1) = rightchild(i1, j1)

A[i1, j1, i2, j2] = max
{

Â[i1, j1, i2, j2],

max
i2<l< j2

{A[i1, k − 1, i2, l − 1] + A[k, j1, l, j2]}
} (13.5)

Theorem 6. Assuming that P1 is a secondary structure, the new recurrence needs space O(n2
1
· n2

2
) and time O(n2

1
· n2

2
+

n1 · n
3
2
).

Proof: Parts (??) and (??) need constant time at each step of filling the four-dimensional table. Part (??) of the
recurrence needs time O(n2). But it is called only O(| P′ | ·n2

2
) = O(n1 · n

2
2
) times. From this the claimed bound

follows.

What does the new recurrence do differently?

1. The old recurrence triggered the expensive part for each interval where j1, j2 was the right end of a
possible interaction match.

2. The new recurrence triggers the expensive part only for intervals that define an artificial interaction, which
in turn adds multiloops together.

3. This also warrants the extension to the left and right and the additional case of a real interaction match.

Theorem 7. Assuming that P1 is a secondary structure, the new algorithm is correct.

Proof: exercise (hard).

13.8 Summary

• Similar to sequence logos, we can visualize the mutual information contained in RNA sequence-structure
alignments.

• RNA sequence-structure alignments without pseudoknots can be computed using dynamic program-
ming.
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• Te time requirement for the DP algorithm depends on the fact whether the annotations of the sequences
are a structure or not.

• If one annotation is a structure, then the running time can be improved.


