
Algorithmische Bioinformatik WS 11/12: , by R. Krause/ K. Reinert, November 22, 2011, 23:36 1

Fast filtering algorithms

This exposition is based on

1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 6.5, pages 162ff.

We present the hierarchical filtering approach called PEX of Navarro and Baeza-Yates.

Filtering algorithms

The idea behind filtering algorithms is that it might be easier to check that a text position does not match a
pattern string than to verify that it does.

Filtering algorithms filter out portions of the text that cannot possibly contain a match, leaving positions that
could match.

The potential match positions then need to be verified with another algorithm like for example the bit-parallel
algorithm of Myers (BPM).

Filtering algorithms (2)

Filtering algorithms are very sensitive to the error level α := k/m since this normally affects the amount of text
that can be discarded from further consideration. (m = pattern length, k = errors.)

If most of the text has to be verified, the additional filtering steps are an overhead compared to the strategy of
just verifying the pattern in the first place.

On the other hand, if large portions of the text can be discarded quickly, then the filtering results in a faster
search.

Filtering algorithms can improve the average-case performance (sometimes dramatically), but not the worst-case
performance.

The pigeonhole principle

The pigeonhole principle (2)

Assume that we want to find all occurrences of a pattern P = p1, ... ,pm in a text T = t1, ... , tn that have an edit
distance of at most k .

If we divide the pattern into k + 1 pieces P = p1, ... ,pk+1, then at least one of the pattern pieces match without
error.

2 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 22, 2011, 23:36

The pigeonhole principle (3)

There is a more general version of this principle first formalized by Myers in 1994:

Lemma 1. Let Occ match P with k errors, P = p1, ... ,pj be a concatenation of subpatterns, and a1, ... ,aj be
nonnegative integers such that A = ∑

j
i=1 ai . Then, for some i ∈ 1, ... , j , Occ includes a substring that matches pi

with baik/Ac errors.

Proof: Exercise.

The pigeonhole principle (4)

So the basic procedure is:

1. Divide: Divide the pattern into k + 1 pieces of approximately the same length.

2. Search: Search all the pieces simultaneously with a multi-pattern string matching algorithm. According to
the above lemma, each possible occurrence will match at least one of the pattern pieces.

3. Verify: For each found pattern piece, check the neighborhood with a verification algorithm that is able to
detect an occurrence of the whole pattern with edit distance at most k . Since we allow indels, if pi1 ...pi2
matches the text tj ... tj+i2−i1 , then the verification has to consider the text area tj−(i1−1)−k ... tj+(m−i1)+k , which
is of length m + 2k .

An example

Say we want to find the pattern annual in the texts

t1 = any_annealing and

t2 = an_unusual_example_with_numerous_verifications

with at most 2 errors.

An example (2)

1. Divide: We divide the pattern annual into p1 = an, p2 = nu, and p3 = al . One of these subpattern has to
match with 0 errors.

2. Search: We search for all subpatterns:

1: searching for an: in t_1: find positions 1, 5
in t_2: find position 1

2: searching for nu: in t_1: find no positions
in t_2: find positions 5, 25

3: searching for al: in t_1: find position 9
in t_2: find position 9

3. Verification: We have to verify 3 positions in t1, and 4 positions in t2, to find 3 occurrences in t1 and none
in t2.

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 22, 2011, 23:36 3

Hierarchical verification

The toy example makes clear that many verifications can be triggered that are unsuccesssful and that many
subpatterns can trigger the same verification. Repeated verfications can be avoided by carefully sorting the
occurrences of the pattern.

It was shown by Baeza-Yates and Navarro that the running time is dominated by the multipattern search for error
levels α = k/m below 1/(3 log|Σ|m). In this region, the search cost is about O(kn

log|Σ|m
m). For higher error levels,

the cost for verifications starts to dominate, and the filter efficiency deteriorates abruptly.

Baeza-Yates and Navarro introduced the idea of hierarchical verification to reduce the verification costs, which
we will explain next. Then we will work out more details of the three steps.

Hierarchical verification (2)

Navarro and Baeza-Yates use Lemma 1 for a hierarchical verification. The idea is that, since the verification cost
is high, we pay too much for verifying the whole pattern each time a small piece matches. We could possibly
reject the occurrence with a cheaper test for a shorter pattern.

So, instead of directly dividing the pattern into k +1 pieces, we do it hierarchically. We split the pattern first in two
pieces and search for each piece with bk/2c errors, following Lemma 1. The halves are then recursively split
and searched until the error rate reaches zero, i. e. we can search for exact matches.

With hierarchical verification the area of applicability of the filtering algorithm grows to α < 1/ log|Σ|m, an error
level three times as high as for the naive paritioning and verification. In practice, the filtering algorithm pays off
for α < 1/3 for medium long patterns.

Hierarchical verification (3)

Example. Say we want to find the pattern P = aaabbbcccddd in the text T = xxxbbbxxxxxx with at most k = 3
differences. The pattern is split into four pieces p1 = aaa, p2 = bbb, p3 = ccc, p4 = ddd. We search with k = 0
errors in level 2 and find bbb.

level 0 aaabbbcccddd with k=3 errors
/ \

level 1 aaabbb cccddd with k=1 errors
/ \ / \

level 2 aaa bbb ccc ddd with k=0 errors

Hierarchical verification (4)

Now instead of verifying the complete pattern in the complete text (at level 0) with k = 3 errors, we only have to
check a slightly bigger pattern (aaabbb) at level 1 with one error. This is much cheaper. In this example we can
decide that the occurrence bbb cannot be extended to a match.

4 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 22, 2011, 23:36

level 0 aaabbbcccddd with k=3 errors
/ \

level 1 AAABBB cccddd with k=1 errors
/ \ / \

level 2 aaa BBB ccc ddd with k=0 errors

The PEX algorithm

Divide: Split pattern into k + 1 pieces, such that each piece has equal probability of occurring in the text. If no
other information is available, the uniform distribution is assumed and hence the pattern is divided in pieces of
equal length.

The PEX algorithm (2)

Build Tree: Build a tree of the pattern for the hierarchical verification. If k + 1 is not a power of 2, we try to keep
the binary tree as balanced as possible.

Each node has two members from and to indicating the first and the last position of the pattern piece represented
by it. The member err holds the number of allowed errors. A pointer myParent leads to its parent in the tree.
(There are no child pointers, since we traverse the tree only from the leafs to the root.) An internal variable left
holds the number of pattern pieces in the left subtree. idx is the next leaf index to assign. plen is the length of a
pattern piece.

Algorithm CreateTree generates a hierarchical verification tree for a single pattern. (Lines 12 and 14 are justified
by Lemma 1.)

The PEX algorithm (3)

(1) CreateTree(p = pipi+1 ...pj , k , myParent , idx , plen)
(2) // Note: the initial call is: CreateTree (p, k , nil , 0, bm/(k + 1)c)
(3) Create new node node
(4) from(node) = i
(5) to(node) = j
(6) left = d(k + 1)/2e
(7) parent(node) = myParent
(8) err (node) = k
(9) if k = 0

(10) then leafidx = node
(11) else
(12) lk = b(left · k)/(k + 1)c
(13) CreateTree(pi ...pi+left·plen−1, lk , node, idx , plen)
(14) rk = b((k + 1− left) · k)/(k + 1)c
(15) CreateTree(pi+left·plen ...pj , rk , node, idx + left , plen)
(16) fi

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 22, 2011, 23:36 5

The PEX algorithm (4)

Example: Find the pattern P = annual in the text T = annual_CPM_anniversary with at most k = 2 errors.
First we build the tree with k + 1 = 3 leaves. Below we write at each node ni the variables (from, to,error) .

"annual" n4=(1,6,2)
/ \

"annu" n3=(1,4,1) \
/ \ \

"an" n0=(1,2,0) "nu" n1=(3,4,0) "al" n2=(5,6,0)
| | |

leaf 0 leaf 1 leaf 2

The PEX algorithm (5)

Search: After constructing the tree, we have k + 1 leafs leafi . The k + 1 subpatterns

{ pfrom(n), ... ,pto(n), n = leafi , i ∈ {0, ... ,k} }

are sent as input to a multi-pattern search algorithm (e. g. Aho-Corasick, Wu-Manbers, or SBOM). This algorithm
gives as output a list of pairs (pos, i) where pos is the text position that matched and i is the number of the piece
that matched.

The PEX algorithm performs verifications on its way upward in the tree, checking the presence of longer and
longer pieces of the pattern, as specified by the nodes.

The PEX algorithm (6)

(1) Search phase of algorithm PEX
(2) for (pos, i) ∈ output of multi-pattern search do
(3) n = leafi ; in = from(n); n = parent(n);
(4) cand = true;
(5) while cand = true and n 6= nil do
(6) p1 = pos− (in− from(n))−err (n);
(7) p2 = pos + (to(n)− in) + err (n);
(8) verify text tp1 ... tp2 for pattern piece pfrom(n) ...pto(n)

(9) allowing err (n) errors;
(10) if pattern piece was not found
(11) then cand = false;
(12) else n = parent(n);
(13) fi
(14) od
(15) if cand = true
(16) then report the positions where the whole p was found;
(17) fi
(18) od

6 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 22, 2011, 23:36

The PEX algorithm (7)

We search for annual in annual_CPM_anniversary. We constructed the tree for annual. A multi-pattern
search algorithm finds: (1,1), (12,1), (3,2), (5,3). (Note that leaf i corresponds to pattern pi+1). For each of
these positions we do the hierarchical verification:

Initialization for (1,1);
n=n0; in=1; n=n3; cand=true;
While loop;
a) p1=1-(1-1)-1=0; p2=1+(4-1)+1=5;
verify pattern annu in text annua with 1 error => found !
b) p1=1-(1-1)-2=-1; p2=1+(6-1)+2=8;
verify pattern annual in text annual_C => found !
c) report end positions (6,7,8)

The PEX algorithm (8)

Initialization for (3,2);
n=n1; in=3; n=n3; cand=true;
While loop;
a) p1=3-(3-1)-1=0; p2=3+(4-3)+1=5;
verify pattern annu in text annua with 1 error => found !
b) p1=3-(3-1)-2=-1; p2=3+(6-3)+2=8;
verify pattern annual in text annual_C => found !
c) report end positions (6,7,8)

The PEX algorithm (9)

Initialization for (12,1);
n=n0; in=1; n=n3; cand=true;
While loop;
a) p1=12-(1-1)-1=11; p2=12+(4-1)+1=16;
verify pattern annu in text _anniv with 1 error => found !
b) p1=12-(1-1)-2=10; p2=12+(6-1)+2=19;
verify pattern annual in text M_annivers => NOT found !

Summary

• Filtering algorithms prevent a large portion of the text from being looked at.

• The larger α = k/m, the less efficient filtering algorithms become.

• Filtering algorithms based on the pigeonhole principle need an exact, multi-pattern search algorithm and
a verification capable approximate string matching algorithm.

• The PEX algorithm starts verification from short exact matches and considers longer and longer substrings
of the pattern as the verification proceeds upward in the tree.

