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De novo sequencing of peptides poses one of the most
challenging tasks in data analysis for proteome research.
In this paper, a generative hidden Markov model (HMM)
of mass spectra for de novo peptide sequencing which
constitutes a novel view on how to solve this problem in
a Bayesian framework is proposed. Further extensions of
the model structure to a graphical model and a factorial
HMM to substantially improve the peptide identification
results are demonstrated. Inference with the graphical
model for de novo peptide sequencing estimates posterior
probabilities for amino acids rather than scores for single
symbols in the sequence. Our model outperforms state-
of-the-art methods for de novo peptide sequencing on a
large test set of spectra.

In the process of high-throughput protein identification, mass
spectrometry has attained considerable importance during the
most recent years.! Analysis based on mass spectrometry typically
starts with a complex protein mixture which is fractionated by
either gel electrophoresis or other fractionation methods to reduce
the complexity of the sample. The proteins are then digested by
a specific enzyme, such as trypsin. The resulting set of peptides
is measured by a tandem mass spectrometer coupled with a high
performance liquid chromatography device. In the first measure-
ment stage of a tandem mass spectrometer, the total mass of the
different peptides eluting at a certain time point from the column
is determined. In the second stage, a subset of peptides of a certain
small mass range is selected. These peptides are fragmented by
low-energy collision with a noble gas. This fragmentation process
finally yields the MS/MS spectra that ideally contain the masses
of all N-terminal and C-terminal fragments of the designated
peptides.

The inherently high noise level of mass spectra in high-
throughput experiments strongly favors probabilistic models of
the data generation process. In this paper, we propose NovoHMM,
a novel and completely generative statistical model for mass
spectra which arise from peptide sequences.! (A preliminary
version of this model was presented at the NIPS conference.?)
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The data generation process is assumed to be adequately
described by a hidden Markov model with hidden amino acid
states along the mass axis of a spectrum and observable emissions
of mass peaks for each state. The model is generative in the sense
that typical spectra can be sampled from the estimated model,
given a peptide sequence. The complete HMM produces compu-
tational costs which scale quadratically in the number of states.
To reduce the computational and model complexity, the complete
model is approximated by a factorial hidden Markov model. The
factorial model implicitly estimates whether a certain peak has
been generated by an N-terminal or a C-terminal fragment. An
expectation-maximization algorithm is used to estimate these
hidden variables. The complexity regularization mechanism by
factorization leads to an improved predictive power of the model.
As a particular advantage for inference, NovoHMM explicitly
represents probabilistic estimates of the posterior, both for the
whole sequence and for single amino acids.

In the Experimental Section, we compare NovoHMM with
other de novo peptide sequencing methods, especially with
PepNovo? which presumably is the best existing de novo sequenc-
ing method for doubly charged ion trap spectra. The experiments
effectively show that our approach outperforms PepNovo and
other competitors on the same benchmark dataset on which
PepNovo was tested. In addition, we show that the model yields
reliable estimates of the peptide’s parent masses. The Bayesian
modeling approach allows us to provide a fully probabilistic
posterior estimate for each amino acid.

Related Work. The interpretation of the tandem MS spectra
usually starts with a database search in cases for which a database
of known proteins is available for the organism under investigation.
The most popular database search tools are SEQUEST* and
MASCOT:> In recent publications, probabilistic models for data-
base searches have been reported, such as OLAV® and SCOPE.”
Data analysts typically observe, however, that only a relatively
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small fraction of all MS/MS spectra can be assigned to sequences
from the database. Many of the spectra, for which the assignment
procedure fails, do not contain enough fragment ions to infer the
underlying peptide sequence. Large-scale quality assessment
studies of mass spectra, on the other hand, show that a consider-
able fraction of failed assignments cannot be explained by low
spectrum quality.® The main reason for the failure to identify these
spectra is the lack of information in protein databases for splice
variants, mutations, or posttranslational modifications. As a
heuristic work-around, it has been proposed to start the analysis
with database searches and subsequently increase the complexity
of the search space.? The largest complexity of the search space
is reached in the stage of de novo sequencing, in which a
minimum of restrictions on the set of potential sequences is
provided (e.g., by constraining the parent mass or by exploiting
knowledge of tryptic digestion).

Lutefisk!%1! and PEAKS!2 are two widely used de novo peptide
sequencing methods. Lutefisk creates a N—C spectrum graph and
searches for the best matching peptides using a simple scoring
scheme. PEAKS creates a similar spectrum graph and generates
a candidate list of peptides by searching the spectrum graph with
a simple scoring scheme. PEAKS further refines this search by a
modified score that takes into account the y-, x-, y — H,O- and y
— NHgions. To obtain the sequences, a dynamic programming
approach®® has been developed that searches for the highest
scoring antisymmetric path in the N—C spectrum graph. A first
probabilistic scoring scheme for de novo sequencing has been
presented by Dancik.’* It simply estimates the fragmentation
pattern at a small number of positions around the b- and y-ions.
An improved scoring scheme?® refines the noise model and uses
a Bayesian network to model the fragmentation patterns.

Preliminaries on Tandem Mass Spectrometry. We consider
double positively charged peptides which typically occur in the
widely used electro-spray ionization. The total elementary mass
of a peptide is

M=1+ mass (o) + 17 + 2 1)

1=

where the first term on the right side of the equation is the N
terminus, the second is the amino acid residues, the third is the
C terminus, and the last is the positive charge (2H™).

The term elementary mass of a molecule refers to the number
of protons and neutrons in the molecule. The exact mass of a
peptide differs slightly from the elementary mass due to mass
deficits from relativity theory. In a mass range up to 2500 Da,
however, we can neglect this mass deficit. In the case of high-
resolution instruments, such as FT-ICR (1 ppm precision), the
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mass deficit is clearly detectable. Data analysis of mass spectra
with such a high resolution is beyond the scope of this paper.

The first MS measurement yields an estimate of the total
peptide mass (parent mass). The difficulty in measuring this parent
mass mainly arises from heavy 13C isotopes, which yield different
visible isotope peaks. Due to fluctuations and limitations in the
resolution of the data, only rough estimates of the monoisotopic
mass can be achieved with a resulting uncertainty of about £1
Da. All masses used within this paper are monoisotopic masses.

In the first measurement scan, the peptides from a small mass
window are selected and fragmented by collision with a noble gas.
Most often, the peptide breaks at the peptide bond, yielding one
N-terminal fragment and one C-terminal fragment. In most cases,
both fragment ions are singly charged. An ideal MS/MS spectrum
contains the masses of all fragments, yielding a list of N-terminal
and C-terminal fragment masses. Deviations from this ideal case
are caused by, for example, isotope shifts which result in problems
in determination of the exact monoisotopic mass of fragments.
Further complications originate from a neutral loss of water (H,0),
ammonia (NHj) or other uncharged molecules in the collision
process. The spectrum probably also contains a small amount of
doubly charged ions. Moreover, spectrometers do not uniformly
detect ions with the same sensitivity along the mass scale of the
spectrum. Furthermore, mass spectrometry measurements are
noisy.

THE HIDDEN MARKOV MODEL

A hidden Markov model is a statistical model describing
sequential data with hidden information. For a general introduction
to HMMs, the reader is referred to, for example, the textbook by
Durbin et al.’> HMMs are widely used in genome analysis, for
example, for the detection of CpG islands. Markov models assume
as their main modeling restriction that the probability of one state
depends only on its predecessor. In a DNA model based on
HMMs, for instance, the probability of observing a nucleotide A
at position 7 depends only on the nucleotide at position 7 — 1 while
being independent of the nucleotides at positions 1, ..., i — 2. In
a HMM, we have to distinguish between hidden and observable
random variables. In a Markov model for DNA sequences, the
individual nucleotides are instances of an observable random
variable. The hidden variable in the above CpG island example
decides whether a nucleotide position belongs to a CpG island.
In our NovoHMM model, the observable random variables
correspond to the observed mass peaks, whereas the hidden
variables represent the unknown underlying sequence.

We will derive a hidden Markov model that generates mass
spectra as a finite automaton over states that correspond to
masses. The elementary mass unit defines a natural granularity
for the states. The elementary masses of fragment ions are
clustered around centers with ~1.000 45-Da spacing. Thus, the
mass axis of a spectrum is discretized in 1.000 45-Da steps. We
will first assume that the exact parent mass is known. The problem
how to estimate the parent mass will be discussed in the section
titled Inferring the Sequence and Posterior Probabilities. The
description of the model is divided in two parts. We first derive
the transition probabilities between the individual model states

(15) Durbin, R;; Eddy, S. R;; Krogh, A.; Mitchison, G. Biological Sequence Analysis;
Cambridge University Press: Cambridge, 1999.



Figure 1. State transitions in the finite state automaton for amino
acid sequences. The graph is drawn for five amino acids.

in the section titled Transition Probabilities. The second part
concerns the emission probabilities which specify the process of
generating peaks of certain heights, given the individual states
(see Emission Probabilities (for N-Terminal Fragments)). Finally,
we combine both sets of probabilities to a factorial hidden Markov
model.

Transition Probabilities. The simplest model of an amino
acid sequence is a list of random variables with 20 different states.
Each random variable represents one amino acid in the sequence.
The transitions are the conditional probabilities of observing a
certain amino acid at position ¢, given the observation at position
t — 1. Figure 1 shows the complete state transition graph for this
model for only five amino acids. The graph is fully connected,
since each amino acid can be followed by any other amino acid.
Every state transition in this model corresponds to a one amino
acid step.

A random variable in a one-dimensional Markov model
depends only on the preceding variable in the sequence. Since
the parent mass constraint has to be fulfilled, we have to know
the total mass of all preceding amino acids. This information is
only available in the model depicted in Figure 2, where we
introduce a counter for the mass of each amino acid. The new
model has, thus, a step size of one elementary mass unit.

The amino acid-based model is augmented by replicating each
state a n, times, where #n, is the elementary mass of the amino
acid a. The transition graph of the augmented model is depicted
by the solid lines in Figure 2. A missing edge in this graph denotes
a vanishing transition probability. Once the first state of an amino
acid has been selected, the transitions are constrained to all
subsequent states of this amino acid. At the end state of an amino
acid, a transition occurs according to the corresponding transition
probabilities in the amino acid-based model from Figure 1. Each
amino acid sequence corresponds to exactly one state sequence
s1, ..., Sy. The transition probabilities of such a state sequence are
denoted by

a(sm’ sm—l) = P(Sm = sm"sm—l = Sm—l) (2)

The resulting model can represent amino acid sequences of
arbitrary length with a state sequence of 1-Da step size. In tandem
mass spectrometry, however, we actually have additional informa-
tion in the form of the measured parent mass, M. After M steps
in the Markov model we can easily check, if the parent mass
constraint is fulfilled: the constraint is satisfied if we have reached
a final state of an individual amino acid. According to the outcome
of this check, a positive and a negative end state are added to the
model. If the parent mass constraint is not fulfilled after M steps,
the only possible transition is one to the negative end state. Thus,

the transition probabilities change in a deterministic way after
exactly M steps. The new transition probabilities are denoted a'.
In Figure 2, the dotted arrows represent the transition probabilities
at step M.

Thus far, we have modeled the prior distribution

PPOf (peptide) 3)

= PON(S, =5, ooy Sy = Syl Sares = 51) O]
M

u rla s Sm—1)@' (g5 Spr1) ®)

on all sequences of a certain parent mass. For any possible peptide,
this distribution specifies the probability that the peptide occurs
in the dataset, given a certain parent mass. It is 0 whenever the
parent mass constraint is not fulfilled, and it is strictly positive
otherwise. Since a' can be clearly identified by the occurrence of
the index M in its argument, we will only refer to one transition
probability @ in the sequel (with a slight abuse of notation).

To estimate the transition probabilities, we implemented the
usual maximum likelihood method which reduces to observing
the frequencies of amino acids in the training dataset in this case.

Emission Probabilities (for N-Terminal Fragments). After
specifying the transition probabilities in the automaton model, the
emission process that finally generates the observable spectra with
all its complexity has to be modeled. Again, we make a simplifica-
tion: we assume that mass peaks are solely generated by
N-terminal ions (a, b, b — H,0, etc.). Within the state sequences
corresponding to a single amino acid (due to the introduced mass
counter, we will refer to these states as counter states in the
sequel), each individual state has a certain function in the
generation process. Figure 3 illustrates the different effects of the
counter states. Assume the states of amino acid A are numbered
from s; to s,,. The main peak (b-ion) is generated by the state s,,,.
The water loss (b — H,0) is generated by the state s,,-1s, the
carbon monoxide loss (a-ion) is generated by the state s,,,_s3, and
so on. A similar analysis is possible for the isotopes: the first
isotope of the b-ion is generated by the first counter state of the
consecutive amino acid. Thus, the state s; generates the first
isotope shift of the b-ion of the previous amino acid. At most states,
we do not expect any fragment ion. For example, it is not observed
that the fragment ion loses an ion of mass 22 Da. These states,
however, may generate noise peaks instead.

For any of these effects, we model an emission probability
distribution of the corresponding peak height. The spectrum under
investigation is denoted by xy, ..., xy. Thus, x,, is the peak height
at mass m. These emission probabilities, e, are now defined as
the probability to observe a peak with a certain peak intensity x,,
given a state s, that is,

e (ty) = PX,, = %,,1S,, = s,) ©)

For any effect (e.g., b-ion, y-ion, b — H,O-ion, noise, etc.) we have
a different emission distribution. In our experiments, we have first
discretized the peak heights by introducing a set of equally
populated bins for intensities. The number of bins was selected
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Figure 2. State transitions in the finite state automaton for tandem mass spectra. Solid arrows denote the possible transitions while generating
a peptide. After M steps, the automaton is forced to take the positive or negative end state (dotted arrows).
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Figure 3. Emission probabilities for N-terminal fragment peaks are coupled with the counter states of the Markov model. Each counter state
has a certain function, for example, the emission of an a-ion, a b-ion, a H>O loss or the emission of a noise peak.

by cross-validation, with optimal prediction performance being
obtained for five bins.

The joint probability distribution of sequence and spectrum is
the basis of the subsequent inference method. For spectra that
contain only N-terminal fragment ions, it is given by

PY(peptide, spectrum) ()]
M
=P, = |‘l aGs,, s,-De, &,) ®)

An analogous model can be derived for the C-terminal fragments.
The overall goal is to infer the peptide that most probably has
generated the spectrum. In Inferring the Sequence and Posterior
Probabilities, it is shown how the peptide is inferred given the
spectrum by only using the above joint probability distribution.
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The Factorial Hidden Markov Model. We now focus on the
combination of the two models for N- and C-terminal fragments.
The main aspect of a hidden Markov model is that the generation
of an event (here a peak) depends only on the preceding event.
In particular, an event cannot depend on the future. In a model
that describes tandem mass spectrometry as a state sequence with
increasing mass, however, such a situation occurs: the peak at a
certain mass position cannot only be produced by the N-terminal
fragment, but also by the C-terminal fragment. For example, if
there is an N-terminal fragment ion in the high-mass region, then
there should be evidence for an C-terminal fragment ion in the
low-mass region. This means that the actual peak depends on a
future event in the mass-ordered state model. This dependency
structure is often the reason a complicated dynamic programming
approach®® is applied to search for antisymmetric paths. We
propose to pursue a different strategy to overcome this problem.



So

Figure 4. Folding the spectrum in the middle illustrates the internal mirror symmetry of the problem. The Markov chain models a sequence
with four amino acids. The filled circles correspond to the amino acid boundaries. Around each amino acid boundary a peak pattern is generated,

once for the N-terminal fragments and once for the C-terminal fragments.

Figure 5. The dependency structure of the factorial hidden Markov model consists of two Markov chains, one for the first half of the peptide
and one for the second half of the peptide. The emission variables depend on both Markov chains, thereby coupling them.

We divide the Markov chain into two Markov subchains: one to
generate the sequences from low mass up to half the parent mass
and another to generate the sequences from parent mass down
to one-half the parent mass (see Figure 4). As a consequence,
the generated spectrum is folded in the middle. The situation
depicted in the figure represents a situation in which a peptide
contains four amino acids. The black dots mark the amino acid
boundaries. The first amino acid boundary (left lower black dot)
generates an N-terminal fragment pattern in the low-mass region
and an C-terminal fragment pattern in the high-mass region.
Analogously, the third amino acid boundary generates an N-
terminal fragment pattern in the high-mass region and an
C-terminal fragment pattern in the low-mass region. The reader
should notice that the main peaks which correspond to the y- and
b-ions exhibit a clear mirror symmetry, whereas the other peaks
break the symmetry.

The dependency structure of the graphical model correspond-
ing to the above Markov subchain structure is drawn in Figure 5
by the solid arrows. One subchain models the low-mass amino
acid sequence (states sy, ..., Syy2), whereas the other generates
the high-mass amino acid sequence (states sy, ..., Sy,2). The two
Markov chains are coupled exclusively by the emission prob-
abilities. Each emission variable (a peak x, in the spectrum)
depends on two states (s,, and spy—,,), because the peak can be
generated either by an N-terminal ion or by an C-terminal ion.
The emission probability in the factorial HMM is

e ®,) = P®,,1S, Spi—m) )

SmSM—m

The joint probability distribution of sequence and spectrum is
given by

P(peptide, spectrum) = P(s, x) (10)
M/2
= rla S S0 r1—s Sym-1s, 5, s, o Cpry)
" (11)

This model combines a HMM for N-terminal fragment ions and
a HMM for C-terminal fragment ions, where the emission symbols
(the peaks) are shared by both models. Such a hidden Markov
model in which the Markov chain factorizes in two (or more)
Markov chains that are only coupled by the emission probabilities
is called a factorial hidden Markov model.16

Frank and Pevzner® introduced a Bayesian network to repre-
sent the fragmentation pattern. Dependencies between emission
probabilities can be incorporated into the factorial HMM, as well.
The design of the structure of the network, however, poses a
challenging task: one has to find a suitable tradeoff between a
refined model of the dependency structure and overfitting
problems induced by an increased model complexity. In practical
applications with a limited number of training samples, the
overfitting problem is of particular importance. It is, thus, not too
surprising that in our experiments, a relatively simple network
structure showed the best results: we model only the dependency

(16) Ghahramani, Z.; Jordan, M. 1. Mach. Learn. 1997, 29, 245—273.
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of the y-ion on the b-ion. All other dependencies, such as the
dependency of the water loss on the b-ion, are discarded. Figure
5 depicts the complete model used in the experiments. The
dependencies between b-ion and y-ion emissions are plotted as
dotted arrows.

Approximation of the Model. Since the state space of the
factorial hidden Markov model is squared in the number of states
of the simple model, decoding becomes very time-consuming.
Furthermore, the model complexity (measured in terms of the
number of free parameters in the model) is extremely high, which
imposes severe problems for a statistical inference process that
is based on relatively small training samples. Sequencing would
become much easier if we knew a priori whether a peak is
generated from an N-terminal ion or an C-terminal ion. A second
set of hidden variables is introduced to distinguish between N-
and C-terminal fragment peaks. Let B,, denote a binary random
variable that takes the value 1 if the peak is an N-terminal fragment
peak and 0 otherwise. In the sequel, these variables will be called
N/C-bits. The emission probabilities from the factorial model are
replaced by a mixture model:

e (,) = bmesm (,) +1- bm)esMim(xm) 12)

SmSM—m
= e, ()", ()" (13)

esM,m,sm(xM—m) = esM,m(xM—m)bM?m'esm(xM—m)l_bMim (14)

The N/C-bit b,, indicates whether the peak is an N-terminal
ion or an C-terminal ion and, thus, on which subchain the peak
¥, depends. Note that the second equation holds, because the
N/C-bits are either 0 or 1. A similar idea of separating the
spectrum into N-terminal and C-terminal peaks has been described
recently.’” The joint probability distribution is now a probability
of peptide, spectrum, and N/C-bits and can be written as

P(peptide, spectrum, N/ C-bits) = P(s, x, b) (15)

M2
= rla Spr S5, (0,) e Cpp ) (16)
=

M2

1=bp by-m
rla (SM—m’ SM—m—l)esM,m(xm) esM,m (xM—m) " (17)
m=

The two sets of hidden variables (the peptides and the N/C-
bits) are coupled. Since a priori knowledge about the origin of
the peaks is hardly available in a de novo scenario, we propose to
use the classical expectation-maximization (EM) algorithm!® (also
known as Baum—Welch training!?) to estimate the hidden N/C-
bit variables.

The expectation-maximization algorithm iterates two steps. In
the E step, the expectation values of the hidden variables (peptide
sequence and N/C-bits) are computed given the observed data

(17) Bern, M.; Goldberg, D. EigenMS: De Novo Analysis of Peptide Tandem
Mass Spectra by Spectral Graph Partitioning. In LNCS; Springer: Berlin,
2005; Vol. 3500.

(18) Dempster, A. P.; Laird, N. M.; Rubin, D. B. J. R. Stat. Soc., Series B 1977,
39, 1-38.

(19) Baum, L. E. Inequalities 1972, 3, 1-8.
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(the training spectra) while keeping the model parameter fixed.
In the M step, the maximum likelihood estimate of the model
parameter is computed, given the training spectra and the
expectation values of the sequences and N/C-bits. We decided
to infer the sequence and the assignment variables by transductive
inference: the sequence and the assignment variables are
estimated within one EM loop involving both the training set and
the new test spectrum. In the E step, the expectation over the
joint probability distribution of all hidden variables (the sequence
and the assignments) has to be computed for the new spectrum.
Since this is computationally intractable, we decided to decouple
both types of variables, leading to an iterative update scheme: if
P(s,,) is given, the expectations of the N/C-bits are estimated as

> s, P, ls,)PG,)

zsm P(,s,)PG,) + ZSM% P, |53 ) PSar_)
(18)

P®,) =

Keeping the N/C-bits fixed, the probabilities P(s,,) are recomputed
by the forward—backward algorithm. The expectation-maximiza-
tion algorithm replaces the binary variables, b,, in the joint
probability distribution by their expectation values that are
equivalent to P(b,,).

Figure 6 shows the estimation of the N/C-hits for one example
spectrum. The original spectrum (top panel) is divided into a
spectrum of N-terminal fragment peaks (middle panel) and
C-terminal fragment peaks (bottom panel). Both the N-terminal
and the C-terminal spectra are derived by multiplying the original
spectrum by the estimation of the N/C-bits. It can be seen that
the N-terminal fragment peaks are clearly separated from the
C-terminal fragment peaks. Note that some peaks can be explained
as neutral loss of b-ions and as y-ions.

Inferring the Sequence and Posterior Probabilities. Since
the measurement of the total peptide mass typically differs from
the true parent mass by up to &1 Da, the hidden Markov model
first is used to obtain a precise estimate of the parent mass. The
maximum likelihood estimate of the parent mass is given by

A~

M= argmax P{x|s, M} 19

= argmax ZP{x, sls,, M} (20)
M N

where the parent mass M is now considered as a random variable.
The sum over all sequences can be computed efficiently by
dynamic programming using the forward or backward algorithm.
In our experiments, we tested the given elementary masses and
one mass unit more or less. The parent mass is estimated using
the model without the grouping variables, b, because the computa-
tion of the corresponding estimates in the model with grouping
would require an integration over all b variables, which is
computationally intractable.

The next step is the decoding, that is, the computation of the
sequence that best matches the spectrum given the parent mass.
The maximum posterior estimate of the sequence is

s* = argmax P{s|x, s,, M} = argmax F{s, «|s,, M} (21)
S N
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Figure 6. Example of spectrum partitioning. The first image shows the original spectrum. It is partitioned into two spectra, the spectrum of

N-terminal fragments (middle) and that of C-terminal fragments (bottom).

The best sequence can efficiently be found by the Viterbi
algorithm.? The Viterbi algorithm can be applied to both models
(with and without grouping).

The probabilistic model, on the other hand, provides more
information than just the best sequence. In particular, it enables
the user to compute posterior probabilities of observing the
predicted sequences. The posterior of the whole sequence is

~

. Ps, x|s_,
P(s|x’ S4, M) — M

Plxls,. I1) @2

The denominator, also known as evidence, can be computed by
applying the forward—backward algorithm.

Despite the fact that the overall prediction accuracy of de novo
sequencing has constantly increased during the most recent years,
it is nowadays still not possible to predict whole sequences de
novo from a complex sample. Thus, a very useful quality scoring
criterion in practical applications is the posterior value of single
amino acids. Assume an amino acid starts at mass ' and ends at
mass ", This amino acid-specific posterior probability is given
by

Zs Sy P{S, x|s+, ]AW}
—— 23)
P{x|s,, M}

Zsl,...s 1
P(S,yy ey Spp) = -

Both the numerator and the denominator can again be computed
by way of the forward—backward algorithm. Here, as for the
parent mass calculation, the exact computation of the posterior
values for the model with grouping would require an intractable
integration over all b variables; therefore, the posterior values for
the grouping model are approximated by the posterior estimates
of the model without grouping.

EXPERIMENTS
To compare the hidden Markov model with other de novo

peptide sequencing methods, we have chosen the benchmark test

(20) G. David Forney, J. Proc. IEEE 1973, 61, 268—278.

composed by Frank and Pevzner. The dataset contains 1252
tandem mass spectra of doubly charged tryptic digest peptides.
The spectra originate from the 18-protein mixture dataset from
Keller et al.! and the open proteomics database from Prince et
al.22 The spectra are divided into two sets: a training set containing
972 spectra and a test set containing 280 spectra. The correspond-
ing sequences are validated by a SEQUEST search against a
20-Mb nonredundant protein database with nonspecific diges-
tion.

In a preprocessing step, the mass scale of the spectra is
discretized in ~1-Da mass units. The peak heights are discretized
into five equally populated bins. The emission probability distribu-
tion is then modeled as a multinominal distribution over these
bins. To cope with the case that the peak height varies strongly
with the relative mass position, we have divided the spectrum into
seven equally sized mass regions. Different emission probability
tables are learned for these seven regions. In a first step, we use
the HMM for estimating the parent mass. For 95.7% of the spectra,
this estimate is correct. Having derived the parent mass, the HMM
is applied to infer the peptide sequence.

The prediction accuracy and recall is measured as

. . number of correct amino acids
precision = ) : - (29
number of predicted amino acids
_ number of correct amino acids
recall = (25)

number of all amino acids in test set

The recall value is the fraction of correctly inferred amino acids
as compared to the total number of amino acids in the test data.
The precision value is the fraction of correctly inferred amino acids
as compared to the total number of inferred amino acids. By
restricting the length of subsequences predicted by an algorithm,
one can vary the precision and recall values. Shorter subsequences

(21) Keller, A.; Purvine, S.; Nesvizhskii, A. L; Stolyar, S.; Goodlett, D. R.; Kolker,
E. OMICS 2002, 6, 207—212.

(22) Prince, J. T.; Carlson, M. W.; Wang, R.; Lu, P.; Marcotte, E. M. Nat.
Biotechnol. 2004, 22, 471—472.
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Figure 7. The precision—recall curves for the HMM as compared
with other de novo sequencing methods. Tolerance criterion: exact
elementary mass. The closer the curve to (1, 1), the better.

Table 1. Prediction Accuracy with Mass Tolerance
2.5 Da

algorithm precision recall av length
NovoHMM¢ 0.769 0.703 9.59
NovoHMM (whole seq.)? 0.737 0.736 10.47
NovoHMM simple® 0.702 0.671 10.02
PepNovo 0.727 0.703 10.39
Sherenga 0.69 0.570 8.65
PEAKS 0.673 0.662 10.32
Lutefisk 0.566 0.475 8.79

¢« HMM in which the recall is chosen identical to PepNovo.
b Precision—recall values for the whole sequence. ¢ HMM without N/C-
bit estimation.

with high confidence give a large precision value, but the recall
is low, because only a small fraction of amino acids is predicted.
Conversely, if longer subsequences with lower confidence are
provided, the whole sequence will have a lower precision, but a
higher recall, since more amino acids are predicted. In the HMM
model, the sequence can be restricted to amino acids that exceed
a certain posterior value. If the posterior cutoff increases, the
precision will increase, but the recall will decrease. Varying cutoff
values gives the precision—recall curves in Figure 7. The closer
the precision—recall curve approaches the point (1, 1), the better
the prediction method is.

We did not distinguish between leucine (L) and isoleucine (I)
and between lysine (K) and glutamine (Q), which have almost
the same mass and cannot be distinguished by low-resolution
tandem mass spectrometry. In the first comparison, we considered
two amino acids to be correct if the difference in mass position of
an amino acid in the original spectrum and in the predicted
spectrum is <2.5 Da, as proposed by Frank and Pevzner.?

In Table 1, NovoHMM is compared to other de novo sequenc-
ing methods. The posterior cutoff is chosen such that the recall
is identical to that of PepNovo. Furthermore, we show the
precision and recall for NovoHMM, inferring the whole sequence.
To emphasize the improvement by introducing the N/C-bits, we
have added the precision—recall values of the HMM with N/C-
bits fixed to 0.5 (HMM simple). Note that NovoHMM outperforms
all other competitors in terms of prediction accuracy. Table 2
presents the relative frequency of correctly labeled subsequences
of length at least x. Whereas PepNovo is superior for short
subsequences, NovoHMM outperforms PepNovo for long ones.

In a second comparison, we considered an amino acid to be
correct if the label is correct and if the elementary mass of the
amino acid in the original spectrum and the predicted spectrum
is identical (see Table 3). NovoHMM outperforms PepNovo for
all parameter settings. Moreover, the HMM is advantageous over
all other investigated methods, since the latter are systematically
worse in terms of both precision and recall. The results for the
exact matching criterion in Table 3 show that when compared to
PepNovo, the HMM supports a much better localization of the
amino acids. Since the values for different recall and precision
values are difficult to compare, we plotted the whole precision—
recall curves in Figure 7. For NovoHMM and for PEAKS, the
curves are computed by varying the posterior cutoff value. For
the other methods, it was not possible to vary any parameter;
therefore, they appear as only a single point.

The HMM model (and also PepNovo) was trained and tested
on data of only a small number of proteins. Training and test data
are generated on the same machines. To show that the results
are not an overfitting toward a certain machine or to certain
proteins, we trained the HMM on 522 spectra derived from a
complex sample of vacuola proteins (Arabidopsis thaliana). The
precision is 0.739 at a recall of 0.703 in the accuracy measure
with 2.5-Da tolerance and a precision of 0.769 at a recall of 0.615
for the exact elementary mass measurement. The values are
certainly smaller, since the training and test instances are
measured under different conditions, but they are only slightly
worse. The best results on de novo sequencing will be derived

Table 2. Percentage of Correct Subsequences of Length at Least x?

predictions with correct subsequences of length at least

algorithm x=3 x=4 x=5
NovoHMM? 0.893 0.796 0.711
NovoHMM (whole seq.)¢ 0.911 0.829 0.743
NovoHMM simple? 0.864 0.761 0.636
PepNovo 0.946 0.871 0.800
Sherenga 0.821 0.711 0.564
PEAKS 0.889 0.814 0.689
Lutefisk 0.661 0.521 0.425

x=6 x=17 x=8 x=9 x=10
0.589 0.486 0.404 0.293 0.193
0.632 0.546 0.464 0.336 0.229
0.542 0.446 0.379 0.279 0.186
0.654 0.525 0.411 0.271 0.193
0.364 0.279 0.207 0.121 0.071
0.575 0.482 0.371 0.275 0.179
0.339 0.268 0.200 0.104 0.057

¢ Prediction accuracy with mass tolerance 2.5 Da. ® HMM in which the recall is chosen identical to PepNovo. ¢ Precision—recall values for the

whole sequence. ¢ HMM without N/C-bit estimation.
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Table 3. Accuracy with Exact Elementary Mass
Matching

algorithm precision  recall  average length
NovoHMM¢ 0.823 0.615 10.28
NovoHMM (whole seq.)? 0.725 0.724 10.42
NovoHMM simple¢ 0.693 0.662 10.04
PepNovo 0.637 0.615 10.12

¢« HMM in which the recall is chosen identical to PepNovo.
b Precision—recall values for the whole sequence. ¢ HMM without N/C-
bit estimation.

when the HMM is retrained if the mass spectrometry conditions
change.

The mean runtime of the HMM without grouping is ~0.1
s per spectrum and 0.9 s for the HMM with grouping on a
standard PC. The memory usage is less than 20 MB for the
HMM without grouping and less than 70 MB for the HMM with
grouping.

To show that the method is able to find posttranslational
modifications, we have searched a dataset of spectra from vacuola
proteins (A. thaliana). The following spectra could be identified
as modified peptides: PM[16/0xidation] EEGLAEAIDDGR and
AAHFEESM[16/Oxidation]K.

The underlying (unmodified) sequences can be found in the
Arabidopsis protein database. For both modified peptides, at least
three further peptides belonging to the same protein were found
by a database search.

CONCLUSION

A novel method for the analysis of mass spectra in de novo
peptide sequencing is presented in this paper. The proposed
hidden Markov model emulates the generation process of mass
spectra in a fully probabilistic way, which supports a clean
separation between signal and noise in the complex mass spectra.
The model was tested on a benchmark data set of publicly
available mass spectra. The HMM clearly outperforms competing
de novo sequencing algorithms in recognition of the parent mass
and prediction accuracy and especially in peak localization. The
success of NovoHMM demonstrates the flexibility of the machine
learning framework for bioinformatics, and soon, we expect
substantial progress in discovering posttranslational modifications
in complex mass spectra as they arise in proteomics. Furthermore,
NovoHMM can also support an advanced database search, and it
can provide the user with confidence intervals for sequences
identification, a very valuable estimate for statistically sound
proteomics.
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