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Part I

Protein Inference Problem
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Protein inference in shotgun proteomics experiment

Figure: Protein inference using mass spectromery data.1

Goal: Find a subset of proteins that are truly present in the sample.

1Ting Huang and Zengyou He. “A linear programming model for protein inference problem in shotgun
proteomics.” In: Bioinformatics 28.22 (2012), pp. 2956–2962.
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What input do we need for protein inference?

I A list of identified peptides.
1. Database-driven approach
2. de novo algorithm

I Peptide probabilities (detecbilities). <- rigorous statitical validation
PeptideProphet2 estimates Pr(+|S): the probability that the peptide assignment with
discriminant score S is correct.

I A list of candidate proteins.
I Expected output: a set of proteins accompanying protein probabilities.
2A. Keller et al. “Empirical statistical model to estimate the accuracy of peptide identifications made

by MS/MS and database search”. In: Analytical chemistry 74.20 (2002), pp. 5383–5392.
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Challenge: Peptide degeneracy

Peptide degeneracy: a single peptide mapped to multiple proteins.

Figure: Peptide identifications (Sigma49 data)

I Shared peptides should belong to all proteins that they can match.

I Conditional probability: model the conditional probability of
I one protein being present given a peptide,
I one peptide being present given a protein.
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Existing protein inference algorithms

I ProteinProphet3 calculates the conditional probability.
Given peptides i , i = 1 · · · n, with probabilities Pr(+|Si ) corresponding to a
protein , the probability p that this protein is present:

p = 1−
n∏
i

[1− Pr(+|Si )]. (1)

I Fido4 estimates the protein posterior error probability.

p = Pr(+|protein). (2)

3Alexey I Nesvizhskii et al. “A statistical model for identifying proteins by tandem mass spectrometry”.
In: Analytical chemistry 75.17 (2003), pp. 4646–4658.

4Oliver Serang, Michael J MacCoss, and William Stafford Noble. “Efficient marginalization to
compute protein posterior probabilities from shotgun mass spectrometry data”. In: Journal of proteome
research 9.10 (2010), pp. 5346–5357.
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Part II

Protein linear programming (ProteinLP)
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Model

I Pr(xj = 1): the probability that protein j is present in the sample.
I Pr(yi = 1, xj = 1): the probability that peptide i and protein j are present in the

sample.

Pr(xj = 1) = 1−
n∏

i=1

[1− Pr(yi = 1, xj = 1)] (3)
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Model

I From Eq. 3:

Pr(xj = 1) = 1−
n∏

i=1

[1− Pr(yi = 1, xj = 1)] = 1−
n∏

i=1

e ln[1−Pr(yi=1,xj=1)]. (4)

The protein probability is rewritten as:

Pr(xj = 1) = 1−
n∏

i=1

epij , (5)

where pij := ln[1− Pr(yi = 1, xj = 1)] ≤ 0.
I The peptide probability:

Pr(yi = 1) = 1−
m∏

j=1

[1− Pr(yi = 1, xj = 1)] = 1−
m∏

j=1

epij . (6)

zi = 1−
m∏

j=1

epij (7)
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LP formulation

Objective:

Maximize the number of proteins with zero probabilities,

while peptide probabilities from joint probabilities should be as close to the input value
as possible.

Maximize:
m∑

j=1

tj , (8)

Subject to: ∀i : tj ≤ pij ≤ 0, (9)

∀i : ln(1− zi − ε) ≤
m∑

j=1

pij ≤ ln(1− zi + ε), (10)

pij = 0, if protein j doesn’t contain peptide i. (11)
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LP formulation

I Constraint (11):
I pij = 0 if Pr(yi = 1, xj = 1) = 0.

I Constraint (10) peptide probability:

zi ± ε = 1−
m∏

j=1

epij (12)

⇒ ln(1− zi ± ε) =
m∑

j=1

pij (13)
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LP formulation solved with GLPK

A standard LP:

Maximize: cT x + c0, (14)

Subject to: Ax = b, (15)

Ax ≤ b, (16)

LB ≤ x ≤ UB. (17)

x = (p11 · · · p1m p21 · · · p2m · · · pnm t1 · · · tm)T

cT = (0|11,m), c0 = 0

A =


11,m 0 · · · 0
0 11,m

... 0
0 11,m


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LP formulation solved with GLPK

Using results of P from Glpk, joint probability matrix 1− eP is computed :

Protein1 Protein2 Protein3 · · · Proteinm

Peptide 1 (0.9) 0.9 0 0 · · · 0
Peptide 2 (0.85) 0.7 0.5 0 · · · 0
...

...
...

. . .
...

Peptide n (0.9) 0 0.5 0 · · · 0.8

Protein Probabilities 1− (1− 0.9)(1− 0.7) 0.75 0 · · · 0.8
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Peptide degeneracy

I ProteinLP: joint probability Pr(xj = 1, yi = 1). e.g. if peptide i present in more
than one protein: m, n, r:

Pr(xm = 1, yi = 1) · Pr(xn = 1, yi = 1) · Pr(xr = 1, yi = 1) > 0 (18)

I ProteinProphet: taking a weight wn
i into account, if peptide i corresponds to N

different proteins.

pn = 1−
n∏
i

(1− w j
i Pr(+|Si )) j = 1 · · ·N. (19)

Combining with Number of Sibling Peptides (NSP): NSPi =
∑
{m|m 6=i} p(+|Dm).

Pr(+|S ,NSP) =
Pr(S |+)Pr(NSP|+)

Pr(S |+)Pr(NSP|+) + Pr(S |−)Pr(NSP|−)
. (20)
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Part III

Results
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Datasets

I Ground-truth data: 18 mixtures (Klimek et al., 2008), Sigma49 and yeast
(Ramakrishnan et al., 2009a)

I Data without reference sets: DME (Brunner et al., 2007), HumanMD
(Ramakrishnan et al., 2009b) and HumanEKC (Ramakrishnan et al., 2009a).
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Sigma49 tested

I Data obtained from http://www.marcottelab.org/MSdata/ .
I Peptide identification: X!Tandem (v2010.10.01.1) (David and Cottrell, 2004).
I GLPK (LPWrapper in OpenMS)
I Proteinlists:
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Validation

With setting a threshold t on the protein probabilities, only positive proteins remain.

False positives can be determined:
I Ground truth datasets.
I Datasets without references - using target-Decoy Analysis.

I Protein database comtaminated with a set of shuffled unreal sequences (decoy
database).

I Protein from decoy database is false one.
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Validation

Given a certain probability threshold t, Ft is the number of false positives,
I Fasle Discovery Rate (FDR):

FDRt =
Ft

Ft + Tt
.

I q-values:
qt = min

t′≤t
FDRt′ .

I Posterior error probability (PEP):

PEP = Pr(+|p).

!"#$%"&'(
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Comparison of q-values

MSB is MSBayespro5.

5Yong Fuga Li et al. “A Bayesian approach to protein inference problem in shotgun proteomics”. In:
Journal of Computational Biology 16.8 (2009), pp. 1183–1193.

20 / 25



Comparison of q-values
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Comparison: the number of degenerate peptides

PP ProteinLP Fido
TP FP TP FP TP FP

18 mixtures
Simple proteins 17 8 17 9 17 9

Degenerate Proteins 1 5 0 5 1 4
Sigma49

Simple proteins 27 1 30 1 30 5
Degenerate Proteins 5 10 5 7 5 3

HumanMD
Simple proteins 70 0 64 0 111 6

Degenerate Proteins 54 0 60 0 7 0

Table: Accuracy on proteins containing shared peptides with q-value threshold 0.3 for Sigma49
and 0.01 for HumanMD.
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Part IV

Conclusions
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Conclusions

I Joint probabilities provide the degeneracy information.
I Joint probabilities simplify the optimization problem.
I To do:

I Integrate supplementary information, e.g. protein-protein interaction, by adding
linear constraints.

I Considering the parameter ε for different peptide probabilities and protein
information.
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Thanks for listening.

Questions?
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