Proteomics Seminar 2014SS

Xiao Liang

April 29, 2014

BIOINFORMATICS ORIGINAL PAPER

Vol. 28 no. 22 2012, pages 2956–2962 doi:10.1093/bioinformatics/bts540

Data and text mining

Advance Access publication September 6, 2012

A linear programming model for protein inference problem in shotgun proteomics

Ting Huang and Zengyou He* School of Software, Dalian University of Technology, Dalian 116621, China Associate Editor: Jonathan Wren

Part I

Protein Inference Problem

Protein inference in shotgun proteomics experiment

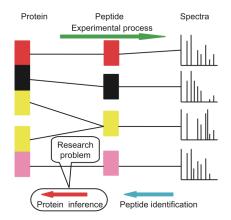
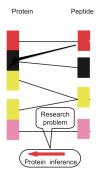


Figure: Protein inference using mass spectromery data.¹

Goal: Find a subset of proteins that are truly present in the sample.

¹Ting Huang and Zengyou He. "A linear programming model for protein inference problem in shotgun proteomics." In: *Bioinformatics* 28.22 (2012), pp. 2956–2962. ← □ → ← (□ → → (□) → ← (□) → ← (□) → ← (□) → ← (□) →

What input do we need for protein inference?



- A list of identified peptides.
 - 1. Database-driven approach
 - 2. de novo algorithm
- Peptide probabilities (detecbilities). <- rigorous statitical validation PeptideProphet² estimates Pr(+|S): the probability that the peptide assignment with discriminant score S is correct.
- A list of candidate proteins.
- Expected output: a set of proteins accompanying protein probabilities.

²A. Keller et al. "Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search". In: *Analytical chemistry* 74.20 (2002), pp. 5383–5392. \triangleright \in \ge \diamond

Challenge: Peptide degeneracy

Peptide degeneracy: a single peptide mapped to multiple proteins.

Peptides	Proteins	Peptide probabilities
ASTSSSSSSSSNQQTEKETNT	PK P51965 UB2E1_HUMA	N 0.9970
YEWRSTILGPPGSVY	P51965 UB2E1_HUMAN	0.6467
YEWRSTILGPPGSVY	Q96LR5 UB2E2_HUMAN	0.6467
YEWRSTILGPPGSVY	Q969T4 UB2E3_HUMAN	0.6467
VLLSICSLLTDCNPADPLVGSI	ATQYMTNR P51965	UB2E1_HUMAN 1.0000

Figure: Peptide identifications (Sigma49 data)

Shared peptides should belong to all proteins that they can match.

Challenge: Peptide degeneracy

Peptide degeneracy: a single peptide mapped to multiple proteins.

Peptides	Proteins	Peptide probabilities
ASTSSSSSSSSNQQTEKETNT	K P51965 UB2E1_HUMAN	0.9970
YEWRSTILGPPGSVY	P51965 UB2E1_HUMAN	0.6467
YEWRSTILGPPGSVY	Q96LR5 UB2E2_HUMAN	0.6467
YEWRSTILGPPGSVY	Q969T4 UB2E3_HUMAN	0.6467
VLLSICSLLTDCNPADPLVGSI	TQYMTNR P51965 U	JB2E1_HUMAN 1.0000

Figure: Peptide identifications (Sigma49 data)

- Shared peptides should belong to all proteins that they can match.
- Conditional probability: model the conditional probability of
 - one protein being present given a peptide,
 - one peptide being present given a protein.

Existing protein inference algorithms

ProteinProphet³ calculates the conditional probability. Given peptides i, i = 1...n, with probabilities Pr(+|S_i) corresponding to a protein, the probability p that this protein is present:

$$p = 1 - \prod_{i}^{n} [1 - Pr(+|S_i)].$$
(1)

Fido⁴ estimates the protein posterior error probability.

$$p = Pr(+|protein). \tag{2}$$

³Alexey I Nesvizhskii et al. "A statistical model for identifying proteins by tandem mass spectrometry". In: Analytical chemistry 75.17 (2003), pp. 4646–4658.

⁴Oliver Serang, Michael J MacCoss, and William Stafford Noble. "Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data". In: *Journal of proteome research* 9.10 (2010), pp. 5346–5357.

Part II

Protein linear programming (ProteinLP)

Model

Table 1. Notations and definitions

Notations	Definitions
$(1, \ldots, i, \ldots, n)$	All <i>n</i> peptides identified by peptide identification algorithms
$(1, \ldots, j, \ldots, m)$	All <i>m</i> proteins that might have generated these <i>n</i> peptides
$(y_1, \ldots, y_i, \ldots, y_n)$	Peptide vector: indicator variables of peptides' presences if peptide <i>i</i> is present, $y_i = 1$; otherwise $y_i = 0$
$(x_1, \ldots, x_i, \ldots, x_m)$	Protein vector: indicator variables of proteins' presences
$(z_1,\ldots,z_i,\ldots,z_n)$	The probabilities of peptides' presences estimated by peptide identification algorithms or PeptideProphet

- $Pr(x_j = 1)$: the probability that protein *j* is present in the sample.
- *Pr*(y_i = 1, x_j = 1): the probability that peptide i and protein j are present in the sample.

$$Pr(x_j = 1) = 1 - \prod_{i=1}^{n} [1 - Pr(y_i = 1, x_j = 1)]$$
(3)

Model

From Eq. 3:

$$Pr(x_j = 1) = 1 - \prod_{i=1}^{n} [1 - Pr(y_i = 1, x_j = 1)] = 1 - \prod_{i=1}^{n} e^{\ln[1 - Pr(y_i = 1, x_j = 1)]}.$$
 (4)

The protein probability is rewritten as:

$$Pr(x_j = 1) = 1 - \prod_{i=1}^{n} e^{p_{ij}},$$
(5)

where $p_{ij} := \ln[1 - Pr(y_i = 1, x_j = 1)] \le 0.$

The peptide probability:

$$Pr(y_i = 1) = 1 - \prod_{j=1}^{m} [1 - Pr(y_i = 1, x_j = 1)] = 1 - \prod_{j=1}^{m} e^{p_{ij}}.$$
 (6)

$$z_i = 1 - \prod_{j=1}^m e^{p_{ij}} \tag{7}$$

LP formulation

Objective:

Maximize the number of proteins with zero probabilities,

while peptide probabilities from joint probabilities should be as close to the input value as possible.

Maximize: $\sum_{j=1}^{m} t_j$, (8)

m

Subject to: $\forall i$

$$: t_j \le p_{ij} \le 0, \tag{9}$$

$$\forall i: \ln(1-z_i-\epsilon) \leq \sum_{j=1}^{m} p_{ij} \leq \ln(1-z_i+\epsilon), \tag{10}$$

 $p_{ij} = 0$, if protein j doesn't contain peptide i. (11)

LP formulation

$$P = (p_{ij})_{n \times m} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & \vdots & p_{ij} & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nm} \end{pmatrix}$$
Row constraints $\Rightarrow \forall i: \begin{cases} \ln(1 - z_i - \varepsilon) \leq \sum_{j=1}^{m} p_{ij} \\ \ln(1 - z_i + \varepsilon) \geq \sum_{j=1}^{m} p_{ij} \end{cases}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LP formulation

$$P = (p_{ij})_{n \times m} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & \vdots & p_{ij} & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nm} \end{pmatrix}$$
Row constraints $\Rightarrow \forall i$:
$$\begin{bmatrix} \ln(1 - z_i - \varepsilon) \leq \sum_{j=1}^{m} p_{ij} \\ \ln(1 - z_j - \varepsilon) \leq \sum_{j=1}^{m} p_{ij} \end{bmatrix}$$

- ▶ Constraint (11):
 ▶ p_{ij} = 0 if Pr(y_i = 1, x_j = 1) = 0.
- Constraint (10) peptide probability:

 $z_{i} \pm \epsilon = 1 - \prod_{j=1}^{m} e^{p_{ij}}$ (12) $\Rightarrow \ln(1 - z_{i} \pm \epsilon) = \sum_{j=1}^{m} p_{ij}$ (13)

LP formulation solved with $\ensuremath{\mathsf{GLPK}}$

A standard LP:

Maximize:
$$c^T x + c_0,$$
(14)Subject to: $Ax = b,$ (15) $Ax \le b,$ (16)

$$LB \le x \le UB. \tag{17}$$

$$x = (p_{11} \cdots p_{1m} \ p_{21} \cdots p_{2m} \cdots p_{nm} \ t_1 \cdots t_m)^T$$

$$c^{T} = (0|\mathbf{1}_{1,m}), \quad c_{0} = 0$$

$$A = \begin{pmatrix} \mathbf{1}_{1,m} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_{1,m} & & \\ & & \vdots & \\ \mathbf{0} & & & \mathbf{1}_{1,m} \\ \end{pmatrix}$$

・ロト・4日・4日・4日・ 日 うへぐ

LP formulation solved with $\ensuremath{\mathsf{GLPK}}$

Using results of F	^o from Glpk,	joint probability	matrix $1 - e^P$	is computed :
--------------------	-------------------------	-------------------	------------------	---------------

	Protein1	Protein2	Protein3		Proteinm
Peptide 1 (0.9)	0.9	0	0		0
Peptide 2 (0.85)	0.7	0.5	0		0
:	:	:	·.	:	
Peptide n (0.9)	0	0.5	0		0.8
Protein Probabilities	1 - (1 - 0.9)(1 - 0.7)	0.75	0		0.8

Peptide degeneracy

ProteinLP: joint probability Pr(x_j = 1, y_i = 1). e.g. if peptide i present in more than one protein: m, n, r:

$$Pr(x_m = 1, y_i = 1) \cdot Pr(x_n = 1, y_i = 1) \cdot Pr(x_r = 1, y_i = 1) > 0$$
(18)

ProteinProphet: taking a weight wⁿ_i into account, if peptide i corresponds to N different proteins.

$$p_n = 1 - \prod_i^n (1 - w_i^j Pr(+|S_i)) \quad j = 1 \cdots N.$$
 (19)

14/25

Combining with Number of Sibling Peptides (NSP): $NSP_i = \sum_{\{m|m \neq i\}} p(+|D_m)$.

$$Pr(+|S,NSP) = \frac{Pr(S|+)Pr(NSP|+)}{Pr(S|+)Pr(NSP|+) + Pr(S|-)Pr(NSP|-)}.$$
(20)

Part III

Results

- Ground-truth data: 18 mixtures (Klimek et al., 2008), Sigma49 and yeast (Ramakrishnan et al., 2009a)
- Data without reference sets: DME (Brunner et al., 2007), HumanMD (Ramakrishnan et al., 2009b) and HumanEKC (Ramakrishnan et al., 2009a).

Sigma49 tested

- Data obtained from http://www.marcottelab.org/MSdata/.
- ▶ Peptide identification: X!Tandem (v2010.10.01.1) (David and Cottrell, 2004).
- GLPK (LPWrapper in OpenMS)
- Proteinlists:

```
</ProteinIdentification>
```

```
<Peptideldentification score_type="XTandem" higher_score_better="true" significance_threshold="0" MZ="667.96337890625" RT="901.678" >
<Peptideliti score="20.8" sequence="DOOKDAEGEGLSATTLLPK" charge="3" aa_before="K" aa_after="L" protein_refs="PH_4025" >
```

```
<UserParam type="float" name="E-Value" value="1.1"/>
```

</PeptideHit>

</PeptideIdentification>

```
<PeptideIdentification score_type="XTandem" higher_score_better="true" significance_threshold="0" MZ="408.515991210938" RT="902.077" >
```

<PeptideHit score="23.2" sequence="SPPSPTTQRR" charge="3" aa_before="R" aa_after="L" protein_refs="PH 432 PH 429 PH 428 PH 4628 PH 5036" > <UserParam type="float" name="E-Value" value="0.65"/>

```
</PeptideHit>
```

```
</PeptideIdentification>
```

Validation

With setting a threshold t on the protein probabilities, only positive proteins remain.

False positives can be determined:

- Ground truth datasets.
- Datasets without references using target-Decoy Analysis.
 - Protein database comtaminated with a set of shuffled unreal sequences (decoy database).
 - Protein from decoy database is false one.

Validation

Given a certain probability threshold t, F_t is the number of false positives,

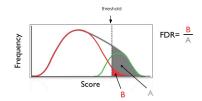
► Fasle Discovery Rate (FDR):

$$FDR_t = \frac{F_t}{F_t + T_t}.$$

$$q_t = \min_{t' \leq t} FDR_{t'}.$$

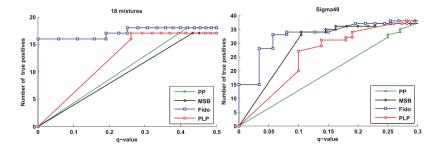
Posterior error probability (PEP):

$$PEP = Pr(+|p)$$



< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

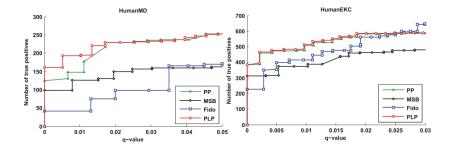
Comparison of q-values



MSB is MSBayespro⁵.

^{20 / 25}

Comparison of q-values



Comparison: the number of degenerate peptides

	P	Р	Prote	einLP	Fie	do
	TP	FP	ΤP	FP	ΤP	FP
	18 mixtures					
Simple proteins	17	8	17	9	17	9
Degenerate Proteins	1	5	0	5	1	4
	Sigma49					
Simple proteins	27	1	30	1	30	5
Degenerate Proteins	5	10	5	7	5	3
	HumanMD					
Simple proteins	70	0	64	0	111	6
Degenerate Proteins	54	0	60	0	7	0

Table: Accuracy on proteins containing shared peptides with q-value threshold 0.3 for Sigma49 and 0.01 for HumanMD.

Part IV

Conclusions

Conclusions

- Joint probabilities provide the degeneracy information.
- Joint probabilities simplify the optimization problem.
- To do:
 - Integrate supplementary information, e.g. protein-protein interaction, by adding linear constraints.
 - \blacktriangleright Considering the parameter ϵ for different peptide probabilities and protein information.

Thanks for listening.

Questions?

