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ABSTRACT: De novo peptide sequencing is the only tool for extracting
peptide sequences directly from tandem mass spectrometry (MS) data
without any protein database. However, neither the accuracy nor the
efficiency of de novo sequencing has been satisfactory, mainly due to
incomplete fragmentation information in experimental spectra. Recent
advancement in MS technology has enabled acquisition of higher energy
collisional dissociation (HCD) and electron transfer dissociation (ETD)
spectra of the same precursor. These spectra contain complementary
fragmentation information and can be collected with high resolution and
high mass accuracy. Taking these advantages, we have developed a new
algorithm called pNovo+, which greatly improves the accuracy and speed of
de novo sequencing. On tryptic peptides, 86% of the topmost candidate
sequences deduced by pNovo+ from HCD + ETD spectral pairs matched
the database search results, and the success rate reached 95% if the top three candidates were included, which was much higher
than using only HCD (87%) or only ETD spectra (57%). On Asp-N, Glu-C, or Elastase digested peptides, 69−87% of the HCD
+ ETD spectral pairs were correctly identified by pNovo+ among the topmost candidates, or 84−95% among the top three. On
average, it takes pNovo+ only 0.018 s to extract the sequence from a spectrum or spectral pair on a common personal computer.
This is more than three times as fast as other de novo sequencing programs. The increase of speed is mainly due to pDAG, a
component algorithm of pNovo+. pDAG finds the k longest paths in a directed acyclic graph without the antisymmetry
restriction. We have verified that the antisymmetry restriction is unnecessary for high resolution, high mass accuracy data. The
extensive use of HCD and ETD spectral information and the pDAG algorithm make pNovo+ an excellent de novo sequencing
tool.
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1. INTRODUCTION

Database search and de novo sequencing are parallel methods
used for peptide identification from tandem mass spectra. In
database search, which has improved considerably in the past
decades,1 all candidate peptides from a specified database are
retrieved for each spectrum, and each peptide-spectrum match
is scored via a scoring function. There are many database search
engines, such as Mascot,2 SEQUEST,3 X! Tandem,4 OMSSA,5

ByOnic,6 pFind,7 InsPecT,8 and Phenyx.9 They are widely used
for routine analysis of tandem mass spectrometry (MS/MS)
data. However, this approach fails when correct peptides are
not present in the database. In situations like this, de novo
sequencing is an indispensable and most valuable tool that can
lead to correct peptide identification.

De novo sequencing extracts peptide sequences directly from
tandem mass spectra without any protein sequence data-
bases.10,11 In 1999, Dancik et al. developed a de novo
sequencing algorithm called Sherenga,12 which utilized an
offset frequency function (OFF) to determine which ion types
ought to be considered for peaks in MS/MS spectra. Sherenga
constructs a spectrum graph after converting peaks from an
experimental spectrum to vertices and then derives peptide
sequences from the spectrum graph.13 Because it is impossible
to know the ion type of every peak beforehand, different ion
types are assumed. Thus, each peak generates several vertices. If
the mass difference between two vertices equals the mass of
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one or more amino acids, these two vertices are connected by a
directed edge. It is stipulated that every peak in the spectrum
may be interpreted as either an N-terminal ion or a C-terminal
ion but not both. This is the basis of the antisymmetry
restriction. The Sherenga algorithm was developed to find the
antisymmetric longest path in the spectrum graph.
Many de novo peptide sequencing algorithms and tools have

been published, including PepNovo,14,15 PEAKS,16 Lutefisk,17

AuDeNs,18 MSNovo,19 SeqMS,20,21 PFIA,22 NovoHMM,23

EigenMS,24 PILOT,25 pNovo,26 Antilope,27 and Vonode.28 The
majority of these algorithms are based on spectrum graphs, but
alternative approaches are also used. Chen et al. proposed a
dynamic programming algorithm to find optimal paths.29−31

Frank et al. developed PepNovo using a probabilistic network
to model the peptide fragmentation events in a mass
spectrometer.15 Zhang et al. designed a simple but effective
divide-and-conquer algorithm to generate a list of sequence
candidates.32 PEAKS, developed by Ma et al., provides each
sequenced result with confidence scores for the entire sequence
and at individual residues.16 For high-resolution MS/MS data,
Spengler proposed an algorithm based on the analysis of amino
acid composition and high mass accuracy to limit the amino
acid combinations to be considered for a spectrum.33 Another
de novo sequencing approach introduced by Boersema et al.
takes advantage of a special protease Lys-N to get nearly
complete sequence ladders of b-ions in CID MS/MS data.34

However, de novo peptide sequencing has not yet become a
mature method. A previous comparative study tested several de
novo sequencing algorithms and found that no more than 50%
of the peptides identified by database search can be correctly
sequenced de novo.35 Generally speaking, many spectra cannot
be de novo sequenced due to incomplete fragmentation; that is,
the fragment ion series contains too many gaps, or some gaps
are too large.
As a result, many de novo sequencing algorithms tried to use

complementary spectra belonging to the same precursor to
obtain more fragmentation information. Horn et al. used
complementary collisionally activated dissociation (CAD) and
electron capture dissociation (ECD) spectra to distinguish N-
and C-terminal fragments.36 Savitski et al. developed an
algorithm that integrates CAD and ECD information for
peptide identification on a proteomics level.37 Datta and Bern
used a Bayesian network to combine information from several
mass spectra of the same peptide.38 Bertsch et al. developed a
tool called CompNovo that used collisionally induced
dissociation (CID) and electron transfer dissociation (ETD)
to improve sequencing accuracy.39 He et al. also developed a
tool based on paired CID and ETD spectra, called ADEPTS.40

A similar strategy is used to improve database search.41

Although the development of de novo peptide sequencing
has improved peptide and protein identification and spectral
interpretation, there are still many problems. Despite the fact
that a pair of spectra can provide more information, de novo
sequencing still yields fewer and less accurate peptides as
compared to database search.37 Besides, most de novo peptide
sequencing algorithms are based on spectrum graph or other
similar approaches to find the longest antisymmetric path,12

which is an NP-hard problem.42 Not surprisingly, most de novo
peptide sequencing algorithms are time-consuming. Andreotti
et al. recently compared four de novo sequencing tools and
reported that for all, the speed is between 0.5 and 1.5 s per
spectrum.27

In our previous work, we developed an algorithm pNovo26

for de novo peptide sequencing on HCD spectra. Here, we
have taken a step further by designing a new algorithm, called
pNovo+, to make the best out of complementary high-
resolution HCD and ETD spectral pairs. Immonium and
internal ions in HCD spectra and hydrogen-rearranged
fragment ions in ETD spectra are all taken into account. In
addition, we verified that the antisymmetry restriction is not
necessary for high-resolution, high-mass accuracy MS/MS data.
Free from this constraint, we developed an efficient algorithm
to find the k longest paths in a directed acyclic graph (DAG),
which substantially accelerated the speed. pNovo+ correctly
sequenced up to 95% of the spectra identified by database
search at an average speed of less than 0.02 s per spectrum on a
common personal computer.

2. METHODS

2.1. Ion Types in HCD and ETD Spectra

To select the appropriate ion types to include in the algorithm,
we used the OFF proposed by Dancik et al.12 As described in
pNovo,26 a spectrum S consists of m peaks from s1 to sm, and
prefix residue masses of the correct peptide are represented by
p1, p2, ..., pn. The prefix OFF is computed as follows. For every si
and pj, we calculated their distance δ with the accuracy of two
decimal places and plotted the occurrence of different δ values.
The suffix OFF is computed in a similar way. Figures S1 and S2
in the Supporting Information show prefix and suffix OFFs of
HCD and ETD mass spectra, respectively. In Tables 1 and 2,

the frequency of each ion type is calculated as the number of
the observed ions divided by the number of all theoretical ions
in the scanned mass range (100−2000 Da). As shown in Tables
1 and 2, y+, b+, a+, y+−NH3, y

+2, y+−H2O, b
+−H2O, and b+−

NH3 are the most predominant ions in the HCD data, while in
ETD data, c+ and z+ ions, as well as c+−H and z++H ions, can
be found in abundance, in agreement with previous findings.43

2.2. Selecting Peaks

Peak selection is one of the most important steps in de novo
peptide sequencing, and many MS/MS preprocessing methods
are devoted to it.44,45 In our algorithm, we address several

Table 1. Different Ion Types Learned from the OFF in the
HCD Data

offset δ prefix/suffix ion type frequency (obsd/theor) (%)

19.02 suffix y+ 62.57
1.01 prefix b+ 48.99

−26.98 prefix a+ 31.35
1.99 suffix y+−NH3 31.48
10.01 suffix y+2 23.22
1.01 suffix y+−H2O 21.25

−16.99 prefix b+−H2O 21.09
−16.01 prefix b+−NH3 16.04

Table 2. Different Ion Types Learned from the OFF in the
ETD Data

offset δ prefix/suffix ion type frequency (obsd/theor) (%)

4.00 suffix z++H 31.52
3.00 suffix z+ 31.49
18.03 prefix c+ 28.84
17.02 prefix c+−H 13.10
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critical problems that can affect correct detection of signal
peaks as opposed to noise peaks. First, the weight of each peak
is set as the natural logarithm of its intensity. Second,
monoisotopic peaks are selected and assigned charge states. If
c is the charge state of a precursor ion, and a fragment ion
appears as an isotopic cluster, the algorithm assigns a charge
state to the fragment by finding the best-fitting one from c, c−1,
c−2, ... till reaching +1. From an isotopic cluster, we select the
peak p with the lowest mass-to-charge ratio (m/z). In addition,
the peaks with intensities greater than p in ETD are also
selected so that c, c−H, z and z+H ions are all included.26 For
peaks not associated with any isotopic clusters, we assume that
they are singly charged in ETD spectra, but in HCD spectra, we
treat them as both singly and doubly charged since y+2 is also an
abundant ion type in HCD spectra (Table 1).
Then, all peaks are transformed to +1 charge according to

their charge states. If two or more peaks are of equal mass
within a given tolerance range (±20 ppm for HCD and ETD
MS/MS data), they are merged together as a new peak, taking
the average mass and weight of these peaks. Lastly, precursor
ion peaks are detected and deleted, because they are often the
most abundant peaks in MS/MS spectra and yet are useless and
even misleading for de novo peptide sequencing. Precursor ion
peaks with neutral losses such as the loss of water or ammonia
are also removed.

2.3. Constructing a DAG for Each Spectrum or Spectral Pair

2.3.1. Generating Graph Vertices. In general, the ion
types of the peaks in tandem mass spectra are unknown, so all
valid fragment ion types have to be considered. For HCD, y, b,
a, y−NH3, y−H2O, b−H2O, and b−NH3 ions are considered,
while for ETD, z+H, z, c, and c−H ions are taken into account.
For instance, if there is a singly charged peak located at m/z
796.54 in a spectrum whose precursor MH+ is 1387.76 Da, the
following b ions are generated: m/z 592.22 (assuming the
original peak is a y ion), m/z 796.54 (assuming the original
peak is a b ion), m/z 824.53 (assuming a), m/z 609.25
(assuming y−NH3), m/z 610.23 (assuming y−H2O), m/z
814.55 (assuming b−H2O), and m/z 813.57 (assuming b−
NH3). In this way, each HCD peak is transformed to seven
singly charged b ions, and each ETD peak is transformed to
four singly charged b ions. Then, all b ions thus generated from
an HCD + ETD spectral pair are integrated, so that in the new
spectrum all peaks are singly charged b ions. If two or more
peaks are of equal mass within a given tolerance range, they are
merged as a new peak.
For each vertex in the spectrum graph, its nominal mass and

weight are the same as its corresponding peak. In addition, we
add a source vertex and a destination vertex to each spectrum
graph. The mass of the source vertex is zero, and the
destination vertex is the precursor mass subtracted by the
mass of a water molecule. Because all proper paths should
contain the source and destination vertices, their weights do not
influence path ranking and thus are set to zero in our algorithm.
2.3.2. Generating Graph Edges. For a pair of vertices, if

the mass difference is equal to the mass of one or two amino
acid residues, they are connected by a directed edge. Every edge
e(u, v) is assigned a weight equal to the weight of vertex v. The
weight of a path is defined as the sum of the weights of the
traversed edges; that is, the weight of a path is the sum of the
weights of the traversed vertices because the weight of the
source vertex is 0. Figure 1 is an example of a spectrum graph
translated from a pair of HCD and ETD spectra. In addition,

leucine and isoleucine are not distinguished, for they have
exactly the same mass.

2.4. Removing the Antisymmetry Restriction

As described above, each peak, because of uncertainty in its ion
type (e.g., b or y), is converted to more than one vertex. In
most cases, however, a peak, if matched, is just one type of ion
(e.g., only y). Thus, each correct vertex has at least one “fake”
vertex associated with it, which is why an antisymmetry path-
finding problem is proposed.12 Unfortunately, the antisymme-
try longest path-finding problem is NP-hard,42 so algorithms
based on finding antisymmetric paths are time-consuming.
On the other hand, a significant number of spectra contain

peaks that can be matched, with confidence from high mass
accuracy, to two types of ions or more. For example, in Figure
2, b6

+ and y12
++ have the same m/z and are matched to the same

peak. This phenomenon is common in HCD and ETD MS/MS
data. We have counted from the Worm data set (described in
section 3) the number of spectra containing at least one peak to
which two or more fragment ions match within the tolerance of
±20 ppm (Table 3). We find that they account for at least
11.8% of the HCD spectra and 9.2% of the ETD spectra and
can be as high as 15.0%. Therefore, it is sometimes incorrect to
limit the interpretation of a peak to just one type of ion.
We also set the tolerance to ±0.5 Da to simulate the

condition found in low-resolution CID/ETD data. As shown in
Table 3, the number of spectra containing at least one peak
matching two or more fragment ions is ∼1.2 times more than
that when ±20 ppm is used. This increase comes from
fragment ions that are absent from the spectra but whose
absence cannot be made sure in low-resolution data. Allowing
two types of ions to match these peaks are obviously
inappropriate and would lead to erroneous results. Therefore,
considering the antisymmetric restriction is sometimes essential
for processing low-resolution MS/MS data to reduce incorrect
matches as previously reported.12,15 In pNovo+, because both
HCD and ETD data are of high resolution, the antisymmetry
restriction is lifted. Benefiting from such freedom, we designed
an efficient algorithm pDAG to find the k longest paths in a
DAG, as shown in the next section.
2.5. Finding the k Longest Paths

Finding the k longest paths in a DAG has many practical
applications. For example, it can be used in timing analysis tools
that examine paths in an integrated circuit to determine the
worst case delay. Several algorithms have been proposed in the
past decades. Yen et al. presented an algorithm to find the k

Figure 1. (A) Example of an initial spectrum graph constructed by
pNovo+. (B) DAG translated from the spectrum graph above. The
number written beside each edge is the weight of the edge. The masses
of the six vertices are 0.000, 115.022, 365.168, 464.237, 521.259, and
677.359 Da. The longest, best-scoring paths DHLVGR and DLHVGR
from D(HL/LH)VGR have the same score, so they are randomly
assigned to be the top1 and top2 ranked sequences from this graph.
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longest paths in DAG in 1989.46 Ju and Saleh reported an
incremental algorithm for enumeration of paths in 1991.47

Kundu also proposed a sophisticated algorithm with well-
contained memory growth in 1994.48

We have developed an efficient algorithm called pDAG to
find the k longest paths in DAG, which is similar to Kundu's.
The difference is that we use a maximum priority queue to
significantly reduce the time required. The pseudo code of the
pDAG algorithm is shown in the Supporting Information.

Here, we describe how it works by taking Figure 1B as an
example. Suppose that L(u, j) is the weight of the j-th longest
path to vertex u from source vertex 0 and weight(u, v) is the
weight of directed edge from u to v. First, to calculate L(5, 1),
we should first calculate L(3, 1) and L(4, 1), because vertices 3
and 4 are predecessor vertices of vertex 5. Then, we compare
L(3, 1) + weight(3, 5) and L(4, 1) + weight(4, 5), and the
greater of the two is L(5, 1). Second, as shown in Figure 1B,
L(5, 1) comes from vertex 4. Therefore, to calculate L(5, 2), we

Figure 2. Peptide-spectrum match in which two fragment ions have the same m/z. In this example, b6
+ and y12

++ are both found at m/z 680.3713.

Table 3. Number of Spectra Containing at Least One Peak to Which Two or More Fragment Ions Match on the Worm Data
Seta

±20 ppm ±0.5 Da

HCD ETD HCD ETD

Asp-N (2367)b 334 (14.1%) 317 (13.4%) 782 (33.0%) 900 (38.0%)
elastase (1161) 159 (13.7%) 133 (11.5%) 365 (31.4%) 282 (24.3%)
Glu-C (1523) 179 (11.8%) 140 (09.2%) 588 (38.6%) 505 (33.2%)
trypsin (3626) 545 (15.0%) 494 (13.6%) 1249 (34.5%) 1209 (33.3%)

aIn the peptide-spectrum match, y, b, a, y−NH3, y
+2, y−H2O, b−H2O, and b−NH3 ion types were considered for HCD, while z+H, z, c, and c−H ion

types were considered for ETD. bTotal number of spectra analyzed from a particular enzyme digestion.

Figure 3. Number of vertices at each in-degree. The green curve is the cumulative frequency of the histogram. The figure shows that 99.6% of
vertices have an in-degree of 18 or less. The average in-degree of these vertices is 4.71, while most of the spectrum graphs in our data set have more
than 300 vertices; therefore, the spectrum graph is a sparse graph. The time complexity of our algorithm is O(|E| log d + k|V| log d′). Thus, the
algorithm requires about linear time with respect to the number of vertices.
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should first calculate L(4, 2), then compare L(4, 2) + weight(4,
5) and L(3, 1) + weight(3, 5) and choose the greater one.
Similarly, when calculating the k-th longest path to vertex v, we
should first calculate L(u, j) if L(v, k−1) comes from L(u, j−1).
The time complexity analysis of pDAG is shown below. We

denote by E the edge set of the graph to find the k longest
paths and denote by V the vertex set of the graph. Define d as
the maximum in-degree of the graph and define d′ as the
average in-degree. It can be proved that the time complexity of
finding the longest path and initializing the maximum priority
queue is O(|E| log d), and the time complexity of finding one of
any other paths is O(|V| log d′). Then, the time complexity of
our algorithm is O(|E| log d + k|V| log d′), which is given by
Theorem 1: The time complexity of algorithm pDAG is O(|E|
log d + k|V| log d′). The proof of this theorem is shown in the
Supporting Information.
For a DAG transformed from a spectrum, the maximum in-

degree and the average in-degree are usually very small. As
shown in Figure 3, while most of the spectrum graphs in our
data set have more than 300 vertices, the maximum in-degree
for a vertex is 32. Moreover, 99.6% of the vertices have an in-
degree of 18 or less, and the average in-degree of these vertices
is 4.71. Thus, the spectrum graph is a sparse one. So, our
algorithm has a linear time complexity with both k and the
number of vertices. In addition, our algorithm uses a maximum
priority queue, which saves about half the time needed by
Kundu's algorithm.
2.6. Ranking Candidate Peptides

We use the breadth first search method to generate all
candidate peptides from the k longest paths. In this step,
peptides whose precursor masses are outside the given
tolerance range are eliminated.
The main problem in this step is how to correctly rank the

candidate peptides. For a candidate peptide, if the number of
amino acids equals the number of edges in the corresponding
path, then all of the fragmentation sites in the peptide have at
least one peak as evidence. Therefore, such peptides are usually
more reliable. For example, DHLGVR is less reliable than
DHLRR in path 0−1−2−4−5 in Figure 1B. We define GAPpep
as follows:

= −L LGAPpep pep path (1)

In eq 1, Lpep is the number of amino acids in the peptide, and
Lpath is the number of edges in the path. If a peptide has a lower
GAP, it is considered to be more reliable. So, we first select top
m (m was equal to 200 in pNovo+) candidate peptides with the
lowest GAP. Then, we used a scoring function similar to
pNovo26 to rank the peptides that have the same GAP, in which
immonium and internal ions in HCD spectra and hydrogen-
rearranged fragment ions in ETD spectra are taken into
account.

3. MATERIALS AND RESULTS

3.1. MS/MS Data

The performance of pNovo+ is tested on HCD and ETD
spectral pairs from two data sets. One is called the Worm data
set, which is from a whole cell lysate of C. elegans analyzed on a
LTQ-Orbitrap XL mass spectrometer equipped with ETD
using a six-step Multidimensional Protein Identification
Technology (MudPIT).49 The other one is called 8-protein
STD, part of which was described by Chi et al.26 Four enzymes,
Asp-N, elastase, Glu-C, and trypsin, are used separately during

sample preparation, resulting in four MS/MS data sets for each
sample. For all experiments, the MS and MS/MS resolutions
were set to 60000 and 7500, respectively.
3.2. Benchmark Data Sets

pFind 2.650 was used to search all of the MS/MS data. The
database search parameters are listed in Table 4. A software

package called pBuild was used to filter the results, with FDR
controlled at 1% at the spectrum level. Then, we selected
spectral pairs with matched HCD and ETD identifications and
required that the identified sequences each contained 6−19
amino acids. In the end, 8677 spectral pairs from the Worm
data set and 913 pairs from 8-protein STD and were selected.
The numbers of spectral pairs from different types of enzymatic
digestion are shown in Table 5.

We compared the performance of pNovo+ with PEAKS from
PeaksStudio 5.3 on the data sets described in Table 5. For
pNovo+, an error tolerance of ±20 ppm was used for both
precursor and fragment ions. Carbamidomethylation on
cysteines and oxidation on methionines were set as variable
modifications. The PEAKS parameters are the same as those of
pNovo+ except that the fragment mass tolerance is ±0.02 Da
(ppm is not supported). To be noted, pNovo+ is an upgrade of
pNovo, which was designed for HCD data. Now, pNovo+
supports de novo sequencing from paired HCD + ETD spectra
or only HCD or ETD spectra. The spectrum graph
construction and the scoring function are the same for all
three scenarios; the only difference is that ion types used in
HCD and ETD spectra are set separately if no spectral pairs are
to be expected. In this section, the performance of pNovo+
using spectral pairs is compared with that of pNovo+ using
HCD or ETD spectra alone.
3.3. Comparison between HCD + ETD and HCD or ETD
Alone

Table 6 summarizes the performance of pNovo+ and PEAKS
when tested on the Worm data set. For each spectrum or
spectral pair, we ask whether the correct peptide sequence
(obtained from database search) can be found among the top
three candidate sequences obtained by de novo sequencing. De
novo sequencing on HCD and ETD spectral pairs is indicated
by (HCD + ETD), which is a unique function of pNovo+. De
novo sequencing on HCD or ETD spectra alone, or a simple
union of their top three results, are denoted by (HCD), (ETD),
or (HCD ∪ ETD). In the case of (HCD ∪ ETD), there may be
up to six different candidate sequences. From Table 6, it is

Table 4. Parameters for Database Search by pFind 2.6

item setting

enzyme Asp-N, elastase, Glu-C, or trypsin, separately
maximum missed cleavage sites 2
precursor tolerance ±20 ppm
fragment tolerance ±20 ppm
variable modifications carbamidomethyl (C), oxidation (M)

Table 5. Number of HCD and ETD Spectral Pairs Selected
from Each Enzymatic Digestion

data set Asp-N elastase Glu-C trypsin sum

Worm 2367 1161 1523 3626 8677
8-protein STD 170 388 149 206 913
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obvious that although combining results obtained separately
from HCD and ETD spectra can increase the number of
correct de novo identifications, the best performance comes
from pNovo+ using (HCD + ETD) spectral pairs, which
correctly sequenced 7966 out of 8677 pairs, achieving an overall
success rate of 91.8% and reaching as high as ∼95% for trypsin
and Asp-N peptides. This is 10−20% more than simply
combining separate HCD and ETD results. Such improvement
is seen across all of the data sets including the Glu-C or elastase
digested samples, with the success rates of de novo sequencing
ranging from ∼84 to ∼95%. On (HCD + ETD) spectral pairs,
pNovo+ generated 20.0% more correct sequences than PEAKS
HCD and ETD results combined or 10.6% more correct
sequences than pNovo+ HCD and ETD results combined.
Moreover, pNovo+ obtained 25.1% more correct sequences

than PEAKS did using only ETD spectra or 5.5% more using
only HCD spectra.
Figure 4 shows the cumulative curves of the number of

correct sequences found among the top one through top 10
candidate sequences on the Worm data set. The exact numbers
are shown in Tables S1−S4 in the Supporting Information.
pNovo+ (HCD + ETD) obtained the highest number of
correct sequences in all four subdata sets (Asp-N, elastase, Glu-
C, and tryptic peptides). In particular, pNovo+ (HCD + ETD)
successfully sequenced 38.4% more spectra than pNovo+
(HCD ∪ ETD)the second beston elastase-digested
peptides.
Longer peptides are more challenging for de novo

sequencing than shorter peptides. Shown in Figure 5 and
Table S13 in the Supporting Information are the distributions
of peptide lengths of correct de novo sequencing results

Table 6. Comparing Successful de Novo Peptide Sequencing Results between pNovo+ and PEAKS on the Worm Data Seta

pNovo+ PEAKS

(HCD + ETD)b (HCD ∪ ETD)c (HCD) (ETD) (HCD ∪ ETD) (HCD) (ETD)

Asp-N (2367)d 2238 (94.6)e 2034 1888 1504 1856 1765 848
elastase (1161) 974 (83.9) 704 513 494 485 444 200
Glu-C (1523) 1329 (87.3) 1058 848 760 793 714 330
trypsin (3626) 3425 (94.5) 3252 3159 2073 3098 3013 1275
sum (8677) 7966 (91.8) 7048 (81.2) 6408 (73.9) 4831 (55.7) 6232 (71.8) 5936 (68.4) 2653 (30.6)

aFor a given spectrum or spectral pair, de novo sequencing is considered successful if the correct peptide sequence is among the top three
candidates. b(HCD + ETD) indicates that paired HCD and ETD spectra are used for obtaining complementary fragmentation information in de
novo sequencing, which is a feature of pNovo+. c(HCD ∪ ETD) represents the union of the (HCD) top three and the (ETD) top three candidates,
and de novo sequencing is considered successful if one of the six candidates is correct. dThe total number of spectra in each test set is indicated in
the leftmost column. eIn parentheses is the percentage of spectra that are correctly sequenced de novo.

Figure 4. Cumulative curves of the number of correct sequences found among the top one to top 10 candidates obtained using pNovo+ (HCD +
ETD), pNovo+ (HCD ∪ ETD), pNovo+ (HCD), pNovo+ (ETD), PEAKS (HCD ∪ ETD), PEAKS (HCD), and PEAKS (ETD) on the Worm data
set. (A) Asp-N, (B) elastase, (C) Glu-C, and (D) trypsin.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr3006843 | J. Proteome Res. XXXX, XXX, XXX−XXXF



obtained by pNovo+ on the Worm data set. For tryptic
peptides (Figure 5) of no more than 12 amino acids, pNovo+
achieved a success rate of 98% or higher. However, the success
rate decreased on longer peptides, especially those containing
more than 17 amino acids. For example, only 69% of the 19-aa
peptides in this data set were correctly sequenced.
We also compared the top three results of pNovo+ and

PEAKS on the 8-protein STD data set (Table 7). As shown, de
novo sequencing using pNovo+ on (HCD + ETD) spectral
pairs is remarkably better than using HCD or ETD spectra
alone or a simple combination of the two (87.7 vs 73.5% or
lower). This is similar to what is observed on the Worm data
set. Comparison between the top 10 results of pNovo+ and
PEAKS on this data set is shown in Tables S5−S8 in the
Supporting Information.
Table 8 shows from another angle that spectral pairing

effectively improves the accuracy of de novo sequencing. Here,
we measure accuracy using the Levenshtein distance (LD),
which is a string metric for measuring the amount of difference
between two sequences.51 For each spectrum (or HCD + ETD
spectral pair for pNovo+), we calculated the LD between the
top candidate and the correct sequence. LD cannot be one
because adding, deleting, or replacing one amino acid will
change the peptide mass (no distinction made between I and
L). As shown in Table 8, de novo sequencing results using
spectral pairs (HCD + ETD) are much closer to the correct
sequences, as compared with those obtained using only HCD
or ETD spectra. About 94% of the top candidates generated by
pNovo+ (HCD + ETD) have a LD of 2 or less, and the average
LD is only 0.55, which means that these sequences are much
more accurate than those from HCD (average LD = 1.69) or
ETD data (average LD = 3.16).

Underlying the high success rates of pNovo+ is the use of
complementary information from HCD and ETD spectra.52

Many spectra cannot be de novo sequenced because the
fragment ion series are incomplete. Luckily, incomplete
fragmentation in one spectrum is often complemented by its
cognate spectrum under a different fragmentation mechanism.
As shown by the example in Figure 6, the subsequences
“PPQR” and “PTD” have no fragmentation information in the
HCD spectrum (A) and the subsequences “LLE”, “ALD”,
“LLPP”, and “RPT” have no fragmentation information in the
ETD spectrum (B). In the regular setting of pNovo+, edges
with more than two amino acids are not considered in the
spectrum graph construction. Therefore, the correct peptide
cannot be identified by pNovo+ using HCD or ETD spectrum
alone. However, if two spectra are used together, the
fragmentation information is present for nearly all of the
amino acid residues, so that the correct peptide can be
identified by pNovo+.
To assess the contribution of the complementarity of HCD

and ETD in a quantitative manner, we examined spectra
containing gaps that probably compromised the accuracy of de
novo sequencing. Table 9 shows that HCD and ETD pairs
contain fewer gaps, as compared with HCD or ETD spectra
separately. For example, 99.0% of the HCD and ETD pairs
from the Worm data set have a maximum gap length of no
more than one amino acid, and the percentage decreases to
92.2% for HCD spectra or 81.1% for ETD spectra. Because one
or two amino acids are considered when vertices are connected
in the spectrum graph construction, nearly all of the HCD and
ETD pairs could be de novo sequenced, theoretically (provided
that from separate HCD and ETD spectra the same peptide

Figure 5. Peptide length affects the performance of pNovo+. Blue bars
represent database search results. Red bars and the percentage labels
indicate the numbers and percentages of correct sequences obtained
by pNovo+. Spectra of tryptic peptides in the Worm data set were
used in this analysis.

Table 7. Comparing Successful de Novo Peptide Sequencing Results between pNovo+ and PEAKS on the 8-Protein STD Data
Set

pNovo+ PEAKS

(HCD + ETD) (HCD ∪ ETD) (HCD) (ETD) (HCD ∪ ETD) (HCD) (ETD)

Asp-N (170) 151 (88.8) 130 102 86 129 102 68
elastase (388) 349 (90.0) 288 226 207 281 196 177
Glu-C (149) 106 (71.1) 69 59 40 71 58 30
trypsin (206) 195 (94.7) 184 177 129 188 179 71
sum (913) 801 (87.7) 671 (73.5) 564 (61.8) 462 (50.6) 669 (73.3) 535 (58.6) 346 (37.9)

Table 8. Distribution of the Levenshtein Distances between
the Top de Novo Candidates and the Correct Peptide
Sequences

pNovo+

(HCD + ETD) (HCD) (ETD)

LD
no. of
spectra

cumulative
percentage

(%)
no. of
spectra

cumulative
percentage

(%)
no. of
spectra

cumulative
percentage

(%)

0 7125 82.1 5423 62.7 3385 39.9
2 1035 94.0 1338 78.1 1912 62.4
3 99 95.2 197 80.4 301 66.0
4 188 97.4 507 86.3 650 73.6
5 73 98.2 230 88.9 362 77.9
6 54 98.8 243 91.7 323 81.7
7 29 99.1 197 94.0 262 84.8
8 29 99.5 137 95.6 258 87.8
9 15 99.6 97 96.7 230 90.5
10 8 99.7 87 97.7 183 92.7
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sequences could be identified through database search at 1%
FDR). The HCD and ETD spectra of trypsin or Asp-N
peptides contain fewer gaps than those of Glu-C or elastase
peptides, consistent with the result that more trypsin and Asp-
N peptides are sequenced successfully using pNovo+.
Mass accuracy is another important factor. We have

compared the results obtained by pNovo+ using different
mass tolerance windows for fragment ions. As shown in Figure
7, the best result was achieved at ±20 ppm. A sharp decrease of
correct de novo sequencing results occurred at ±300 ppm or
larger, which simulates low mass accuracy MS/MS data. Thus,
high mass accuracy is critical for de novo sequencing, consistent
with previous reports.26,37

3.4. Run Time Comparison

The run time of pNovo+ on each data set was compared with
that of PEAKS. As shown in Table 10, the average run time of
pNovo+ is 0.018 s per spectrum, much faster than PEAKS

(0.191 for HCD and 0.186 for ETD). With the pDAG
algorithm, pNovo+ is very efficient at finding the k longest
paths. As compared with the run time of other de novo
sequencing algorithms, pNovo+ is 3−100 times faster.27,37 It
can be reasonably deduced that 50 or more MS/MS spectra can
be sequenced per second, as fast as, if not faster than, the data
acquisition speed of any high-resolution mass spectrometers
available today. Theoretically, it could be employed for real-
time spectral data analysis in shot gun proteomics.
To better evaluate how the release of the antisymmetry

restriction might affect de novo sequencing, we used depth-first
search (DFS) with an efficient pruning strategy, which we had
used in pNovo,26 to replace the pDAG algorithm to find the k
longest paths. Antisymmetry restriction is considered in the
DFS algorithm. Table 11 shows the run time comparison
between pDAG and DFS in finding the k longest paths, and
pDAG is ∼20 times faster than DFS. With respect to accuracy,
there is hardly any difference between pDAG and DFS on
(HCD + ETD) data and no more than 1% difference on HCD
or ETD alone, or (HCD ∪ ETD) (Table S9−S12 in the
Supporting Information). Therefore, we conclude that releasing
the antisymmetry restriction markedly increases the speed and
hardly affects the accuracy of de novo sequencing.

4. DISCUSSION

In this paper, we present a de novo sequencing algorithm called
pNovo+ based on complementary HCD and ETD spectra.
With high mass accuracy HCD and ETD spectral pairs, missing
fragmentation information in one spectrum may be found in
the other, and the antisymmetry restriction becomes unneces-
sary. Thus, we removed the antisymmetry restriction and

Figure 6. HCD and ETD spectral pair belonging to the same precursor. De novo sequencing failed on either HCD (A) or ETD (B) spectrum but
succeeded on the pair of them, as the fragmentation information is present for nearly all of the amino acids in one spectrum or the other.

Table 9. Number of Spectra with a Maximum Gap Length of
No More than Two Amino Acids in the Worm Data Seta

HCD + ETD HCD ETD

Asp-N (2367)b 2346 (99.1%) 2217 (94.5%) 1999 (85.2%)
elastase (1161) 1148 (98.9%) 906 (78.9%) 895 (78.0%)
Glu-C (1523) 1488 (97.7%) 1239 (83.3%) 1143 (76.8%)
trypsin (3626) 3612 (99.6%) 3561 (98.6%) 2936 (81.3%)
sum (8677) 8594 (99.0%) 7923 (92.2%) 6973 (81.1%)

aMaximum gap is defined as the maximum length of consecutive
fragmentation sites not supported by any of the peaks in the
corresponding spectrum. bThe number in parentheses represents the
total number of spectra from the corresponding enzymatic digestion.
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developed an efficient algorithm pDAG to find the k longest
paths, and this significantly improved the speed of de novo
peptide sequencing. Immonium and internal ions in HCD

spectra and hydrogen rearranged fragment ions in ETD spectra
are also considered in the spectrum graph construction and the
design of the scoring function. When tested on two different
data sets, each with four types of enzymatic digestions, up to
95% HCD + ETD spectral pairs were correctly sequenced by
pNovo+ at a rapid speed.
In the course of this study, we found that the antisymmetry

restriction affects de novo sequencing differently depending on
the type of MS/MS data. For low-resolution MS/MS data,
imposing the antisymmetry restriction is critical; otherwise,
many incorrect paths will be retrieved. In contrast, the gain in
accuracy from such restriction is diminished for high-resolution
MS/MS data and disappeared entirely for high-resolution HCD
+ ETD spectral pairs. An incorrect peak-ion match, if
encountered, can often be distinguished by its mass deviation,
which is typically larger than that of a correct match; a peak-ion
match with a larger mass deviation is given a smaller weight.
This is used in pNovo, pNovo+, and a number of other
algorithms such as Vonode.28

Identifying novel proteins (that is, to infer the function of a
novel protein of interest by identifying its true homologous
proteins) from disconnected short peptides remains a
challenge. To obtain longer sequences, several studies relied
on de novo sequencing of peptides from a variety of enzymatic
digestions and assembling them into contigs.53,54 However,
local sequencing errors, frequent on the N termini of peptides,
make it difficult to obtain long and accurate sequences. In a
previous work, we have shown that de novo sequencing results
on separate ETD and HCD data helped identify novel proteins
by providing assurance in sequence accuracy and better
overlap.55 In this study, we report further improvement with
ETD and HCD spectral pairs, which we recommend for all de
novo sequencing applications.
In several studies, the “golden complementary pairs” rule has

been used for ion type determination in complementary CAD
and ECD spectra.36,37 In this work, we also attempted to
determine the ion types of peaks recorded in paired HCD and
ETD spectra. While this is successful for a subset of peaks, for
the vast majority, the ion types cannot be determined.
Furthermore, knowing the ions types of a small fraction of
the peaks did not help de novo sequencing based on spectrum
graphs (data not shown), in which the different types of ions
are treated as different vertices. Nevertheless, further refine-

Figure 7. A 20 ppm mass accuracy window is optimal for the performance of pNovo+. The top three candidates of every spectrum in the Worm data
set were included in the statistical analysis.

Table 10. Run Time of pNovo+ and PEAKSa

time (s)

pNovo+
(HCD +
ETD)

pNovo+
(HCD)

pNovo+
(ETD)

PEAKSb

(HCD)
PEAKS
(ETD)

Asp-N
(2367)c

45.879 40.747 36.738 439 387

elastase
(1161)

20.779 20.187 18.595 274 253

Glu-C
(1523)

30.42 26.972 26.427 373 319

trypsin
(3626)

62.571 59.998 48.906 575 656

average
(8677)

0.018d 0.017 0.015 0.191 0.186

aAll of the run time tests were performed on the same PC (Dell
Precision T1500, Inter(R) Core(TM) i7 CPU 860 at 2.80 GHz). bA
module for run time calculation is embedded into pNovo+. However,
we are unable to obtain the exact run time of PEAKS; therefore, it was
calculated manually by recording the start and end times for each run,
and the accuracy is up to 1 s. cThe number in parentheses indicates the
total number of spectra generated in each test set. dThis value is the
average run time per merged spectrum from an HCD and ETD
spectral pair.

Table 11. Run Time Comparison between pDAG and DFS
Algorithms in Finding the k Longest Paths

pDAG algorithm DFS algorithm

time (s)

pNovo+
(HCD +
ETD)

pNovo
+

(HCD)

pNovo
+

(ETD)

pNovo+
(HCD +
ETD)

pNovo+
(HCD)

pNovo+
(ETD)

Asp-N
(2367)

1.192 1.384 0.876 32.675 25.177 17.867

elastase
(1161)

0.511 0.535 0.422 15.409 10.253 6.859

Glu-C
(1523)

0.852 0.775 0.578 30.238 18.730 15.025

trypsin
(3626)

2.016 1.946 3.180 47.444 37.984 25.372

sum
(8677)

4.571 4.64 5.056 125.766 92.144 65.123

average
(8677)

0.001 0.001 0.001 0.014 0.011 0.008
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ment of ion type determination is under investigation. A
method that can accurately determine the charge states of peaks
not associated with any isotopic peak series could be helpful,
too. pNovo+ can be downloaded for free from http://pfind.ict.
ac.cn/software/pNovo/index.html.

■ ASSOCIATED CONTENT
*S Supporting Information

Figures of HCD and ETD prefix and suffix offset frequency
function, algorithm pDAG, and the proof of theorem 1. This
material is available free of charge via the Internet at http://
pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author

*Tel: +86-10-62601042. Fax: +86-10-62601356. E-mail:
smhe@ict.ac.cn (S.-M.H.). Tel: +86-10-80726688-8515. Fax:
+86-10-80706053. E-mail: dongmengqiu@nibs.ac.cn (M.-
Q.D.).
Present Address
#H.C. is now a Ph.D. student at the Program in Computational
Biology and Bioinformatics, University of Southern California,
Los Angeles, California 90089, United States.
Author Contributions
⊥These authors contributed equally to this work.
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the National Key Basic Research
and Development Program of China (973) under Grant Nos.
2010CB912701, 2010CB835203, and 2012CB910602 and the
CAS Knowledge Innovation Program under Grant Nos.
KGCX1-YW-13 and 20120633. We thank Zuo-Fei Yuan,
Chao Liu, Sheng-Bo Fan, and Kun Zhang for valuable
discussions.

■ REFERENCES
(1) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics.
Nature 2003, 422 (6928), 198−207.
(2) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S.
Probability-based protein identification by searching sequence data-
bases using mass spectrometry data. Electrophoresis 1999, 20 (18),
3551−3567.
(3) Eng, J. An approach to correlate tandem mass spectral data of
peptides with amino acid sequences in a protein database. J. Am. Soc.
Mass Spectrom. 1994, 5 (11), 976−989.
(4) Craig, R.; Beavis, R. C. TANDEM: Matching proteins with
tandem mass spectra. Bioinformatics 2004, 20 (9), 1466−1467.
(5) Geer, L. Y.; Markey, S. P.; Kowalak, J. A.; Wagner, L.; Xu, M.;
Maynard, D. M.; Yang, X.; Shi, W.; Bryant, S. H. Open mass
spectrometry search algorithm. J. Proteome Res. 2004, 3 (5), 958−964.
(6) Bern, M.; Cai, Y.; Goldberg, D. Lookup peaks: A hybrid of de
novo sequencing and database search for protein identification by
tandem mass spectrometry. Anal. Chem. 2007, 79 (4), 1393−1400.
(7) Fu, Y.; Yang, Q.; Sun, R.; Li, D.; Zeng, R.; Ling, C. X.; Gao, W.
Exploiting the kernel trick to correlate fragment ions for peptide
identification via tandem mass spectrometry. Bioinformatics 2004, 20
(12), 1948−1954.
(8) Tanner, S.; Shu, H.; Frank, A.; Wang, L. C.; Zandi, E.; Mumby,
M.; Pevzner, P. A.; Bafna, V. InsPecT: Identification of posttransla-
tionally modified peptides from tandem mass spectra. Anal. Chem.
2005, 77 (14), 4626−4639.

(9) Colinge, J.; Masselot, A.; Giron, M.; Dessingy, T.; Magnin, J.
OLAV: Towards high-throughput tandem mass spectrometry data
identification. Proteomics 2003, 3 (8), 1454−1463.
(10) Allmer, J. Algorithms for the de novo sequencing of peptides
from tandem mass spectra. Expert Rev. Proteomics 2011, 8 (5), 645−
657.
(11) Ma, B.; Johnson, R. De novo sequencing and homology
searching. Mol. Cell Proteomics 2012, 11 (2), O111.014902.
(12) Dancik, V.; Addona, T. A.; Clauser, K. R.; Vath, J. E.; Pevzner, P.
A. De novo peptide sequencing via tandem mass spectrometry. J.
Comput. Biol. 1999, 6 (3−4), 327−342.
(13) Bartels, C. Fast Algorithm for Peptide Sequencing by Mass-
Spectroscopy. Biomed. Environ. Mass Spectrom. 1990, 19 (6), 363−368.
(14) Frank, A. M.; Savitski, M. M.; Nielsen, M. L.; Zubarev, R. A.;
Pevzner, P. A. De novo peptide sequencing and identification with
precision mass spectrometry. J. Proteome Res. 2007, 6 (1), 114−123.
(15) Frank, A.; Pevzner, P. PepNovo: De novo peptide sequencing
via probabilistic network modeling. Anal. Chem. 2005, 77, 964−973.
(16) Ma, B.; Zhang, K. Z.; Hendrie, C.; Liang, C. Z.; Li, M.; Doherty-
Kirby, A.; Lajoie, G. PEAKS: powerful software for peptide de novo
sequencing by MS/MS. Rapid Commun. Mass Spectrom. 2003, 17,
2337−2342.
(17) Taylor, J. A.; Johnson, R. S. Sequence database searches via de
novo peptide sequencing by tandem mass spectrometry. Rapid
Commun. Mass Spectrom. 1997, 11 (9), 1067−1075.
(18) Grossmann, J.; Roos, F. F.; Cieliebak, M.; Liptak, Z.; Mathis, L.
K.; Muller, M.; Gruissem, W.; Baginsky, S. AUDENS: A tool for
automated peptide de novo sequencing. J. Proteome Res. 2005, 4 (5),
1768−1774.
(19) Mo, L.; Dutta, D.; Wan, Y.; Chen, T. MSNovo: A dynamic
programming algorithm for de novo peptide sequencing via tandem
mass spectrometry. Anal. Chem. 2007, 79 (13), 4870−4878.
(20) Fernandez-de-Cossio, J.; Gonzalez, J.; Betancourt, L.; Besada,
V.; Padron, G.; Shimonishi, Y.; Takao, T. Automated interpretation of
high-energy collision-induced dissociation spectra of singly protonated
peptides by “SeqMS”, a software aid for de novo sequencing by
tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1998, 12
(23), 1867−1878.
(21) Fernandez-de-Cossio, J.; Gonzalez, J.; Satomi, Y.; Shima, T.;
Okumura, N.; Besada, V.; Betancourt, L.; Padron, G.; Shimonishi, Y.;
Takao, T. Automated interpretation of low-energy collision-induced
dissociation spectra by SeqMS, a software aid for de novo sequencing
by tandem mass spectrometry. Electrophoresis 2000, 21 (9), 1694−
1699.
(22) Jagannath, S.; Sabareesh, V. Peptide Fragment Ion Analyser
(PFIA): a simple and versatile tool for the interpretation of tandem
mass spectrometric data and de novo sequencing of peptides. Rapid
Commun. Mass Spectrom. 2007, 21 (18), 3033−3038.
(23) Fischer, B.; Roth, V.; Roos, F.; Grossmann, J.; Baginsky, S.;
Widmayer, P.; Gruissem, W.; Buhmann, J. M. NovoHMM: a hidden
Markov model for de novo peptide sequencing. Anal. Chem. 2005, 77
(22), 7265−7273.
(24) Bern, M.; Goldberg, D. De novo analysis of peptide tandem
mass spectra by spectral graph partitioning. J. Comput. Biol. 2006, 13
(2), 364−378.
(25) DiMaggio, P. A., Jr.; Floudas, C. A. De novo peptide
identification via tandem mass spectrometry and integer linear
optimization. Anal. Chem. 2007, 79 (4), 1433−1446.
(26) Chi, H.; Sun, R. X.; Yang, B.; Song, C. Q.; Wang, L. H.; Liu, C.;
Fu, Y.; Yuan, Z. F.; Wang, H. P.; He, S. M.; Dong, M. Q. pNovo: De
novo peptide sequencing and identification using HCD spectra. J.
Proteome Res. 2010, 9 (5), 2713−2724.
(27) Andreotti, S. K.; Reinert, G. W.; Antilope, K.; Lagrangian, A.
Relaxation Approach to the de novo Peptide Sequencing Problem.
IEEE/ACM Trans. Comput. Biol. Bioinf. 2011, 9 (2), 385−394.
(28) Pan, C.; Park, B. H.; McDonald, W. H.; Carey, P. A.; Banfield, J.
F.; VerBerkmoes, N. C.; Hettich, R. L.; Samatova, N. F. A high-
throughput de novo sequencing approach for shotgun proteomics

Journal of Proteome Research Article

dx.doi.org/10.1021/pr3006843 | J. Proteome Res. XXXX, XXX, XXX−XXXJ

http://pfind.ict.ac.cn/software/pNovo/index.html
http://pfind.ict.ac.cn/software/pNovo/index.html
http://pubs.acs.org
http://pubs.acs.org
mailto:smhe@ict.ac.cn
mailto:dongmengqiu@nibs.ac.cn


using high-resolution tandem mass spectrometry. BMC Bioinf. 2010,
11, 118.
(29) Chen, T.; Kao, M. Y.; Tepel, M.; Rush, J.; Church, G. M. A
dynamic programming approach to de novo peptide sequencing via
tandem mass spectrometry. J. Comput. Biol. 2001, 8 (3), 325−337.
(30) Lu, B.; Chen, T. A suboptimal algorithm for de novo peptide
sequencing via tandem mass spectrometry. J. Comput. Biol. 2003, 10
(1), 1−12.
(31) Lu, B.; Chen, T. Algorithms for de novo peptide sequencing via
tandem mass spectrometry. Biosilico 2004, 2 (2), 85−90.
(32) Zhang, Z. Prediction of low-energy collision-induced dissocia-
tion spectra of peptides. Anal. Chem. 2004, 76 (14), 3908−3922.
(33) Spengler, B. De novo sequencing, peptide composition analysis,
and composition-based sequencing: a new strategy employing accurate
mass determination by fourier transform ion cyclotron resonance mass
spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15 (5), 703−714.
(34) Boersema, P. J.; Taouatas, N.; Altelaar, A. F.; Gouw, J. W.; Ross,
P. L.; Pappin, D. J.; Heck, A. J. Mohammed, S., Straightforward and de
novo peptide sequencing by MALDI-MS/MS using a Lys-N
metalloendopeptidase. Mol. Cell Proteomics 2009, 8 (4), 650−660.
(35) Pevtsov, S.; Fedulova, I.; Mirzaei, H.; Buck, C.; Zhang, X.
Performance evaluation of existing de novo sequencing algorithms. J.
Proteome Res. 2006, 5 (11), 3018−3028.
(36) Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated de
novo sequencing of proteins by tandem high-resolution mass
spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97 (19), 10313−
10317.
(37) Savitski, M. M.; Nielsen, M. L.; Kjeldsen, F.; Zubarev, R. A.
Proteomics-grade de novo sequencing approach. J. Proteome Res. 2005,
4 (6), 2348−2354.
(38) Datta, R.; Bern, M. Spectrum fusion: Using multiple mass
spectra for de novo Peptide sequencing. J. Comput. Biol. 2009, 16 (8),
1169−1182.
(39) Bertsch, A.; Leinenbach, A.; Pervukhin, A.; Lubeck, M.;
Hartmer, R.; Baessmann, C.; Elnakady, Y. A.; Muller, R.; Bocker, S.;
Huber, C. G.; Kohlbacher, O. De novo peptide sequencing by tandem
MS using complementary CID and electron transfer dissociation.
Electrophoresis 2009, 30 (21), 3736−3747.
(40) He, L.; Ma, B. ADEPTS: Advanced peptide de novo sequencing
with a pair of tandem mass spectra. J. Bioinform. Comput. Biol. 2010, 8
(6), 981−994.
(41) Kim, S.; Mischerikow, N.; Bandeira, N.; Navarro, J. D.; Wich, L.;
Mohammed, S.; Heck, A. J.; Pevzner, P. A. The generating function of
CID, ETD, and CID/ETD pairs of tandem mass spectra: applications
to database search. Mol. Cell Proteomics 2010, 9 (12), 2840−2852.
(42) Gabow, H. N.; Maheshwari, S. N.; Osterweil, L. J. On Two
Problems in the Generation of Program Test Paths. IEEE Trans. Softw.
Eng. 1976, 2 (3), 227−231.
(43) Sun, R. X.; Dong, M. Q.; Song, C. Q.; Chi, H.; Yang, B.; Xiu, L.
Y.; Tao, L.; Jing, Z. Y.; Liu, C.; Wang, L. H.; Fu, Y.; He, S. M.
Improved peptide identification for proteomic analysis based on
comprehensive characterization of electron transfer dissociation
spectra. J. Proteome Res. 2010, 9 (12), 6354−6367.
(44) Gentzel, M.; Kocher, T.; Ponnusamy, S.; Wilm, M.
Preprocessing of tandem mass spectrometric data to support
automatic protein identification. Proteomics 2003, 3 (8), 1597−1610.
(45) Zhang, J.; He, S.; Ling, C. X.; Cao, X.; Zeng, R.; Gao, W.
PeakSelect: Preprocessing tandem mass spectra for better peptide
identification. Rapid Commun. Mass Spectrom. 2008, 22 (8), 1203−
1212.
(46) Yen, S. H.; Du, D. H.; Ghanta, S. Efficient algorithms for
extracting the K most critical paths in timing analysis. Proc. ACM/IEEE
Des. Autom. Conf. 1989, 649−654.
(47) Ju, Y. C.; Saleh, R. A. Incremental Techniques for the
Identification of Statically Sensitizable Critical Paths. In Design Autom.
Conf. 1991, 541−546.
(48) Kundu, S. An incremental algorithm for identification of longest
(shortest) paths. Integr. VLSI J. 1994, 17 (1), 25−31.

(49) McDonald, W. H.; Ohi, R.; Miyamoto, D. T.; Mitchison, T. J.;
Yates, J. R. Comparison of three directly coupled HPLC MS/MS
strategies for identification of proteins from complex mixtures: Single-
dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int. J.
Mass Spectrom. 2002, 219 (1), 245−251.
(50) pFind Studio: A computational solution for mass spectrometry-
based proteomics (http://pfind.ict.ac.cn).
(51) Levenshtein, V. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 1966, 707−710.
(52) Zubarev, R. A.; Zubarev, A. R.; Savitski, M. M. Electron capture/
transfer versus collisionally activated/induced dissociations: Solo or
duet? J. Am. Soc. Mass Spectrom. 2008, 19 (6), 753−761.
(53) Bandeira, N.; Clauser, K. R.; Pevzner, P. A. Shotgun protein
sequencing: Assembly of peptide tandem mass spectra from mixtures
of modified proteins. Mol. Cell Proteomics 2007, 6 (7), 1123−1134.
(54) Liu, X.; Han, Y.; Yuen, D.; Ma, B. Automated protein
(re)sequencing with MS/MS and a homologous database yields almost
full coverage and accuracy. Bioinformatics 2009, 25 (17), 2174−2180.
(55) Zhao, Y.; Sun, W.; Zhang, P.; Chi, H.; Zhang, M. J.; Song, C. Q.;
Ma, X.; Shang, Y.; Wang, B.; Hu, Y.; Hao, Z.; Huhmer, A. F.; Meng, F.;
L'Hernault, S, W.; He, S. M.; Dong, M. Q.; Miao, L. Nematode sperm
maturation triggered by protease involves sperm-secreted serine
protease inhibitor (Serpin). Proc. Natl. Acad. Sci. U.S.A. 2012, 109
(5), 1542−1547.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr3006843 | J. Proteome Res. XXXX, XXX, XXX−XXXK

http://pfind.ict.ac.cn

