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The goal of many LC-MS proteomic investigations is to quantify and compare the abundance of proteins
in complex biological mixtures. However, the output of an LC-MS experiment is not a list of proteins,
but a list of quantified spectral features. To make protein-level conclusions, researchers typically apply
ad hoc rules, or take an average of feature abundance to obtain a single protein-level quantity for each
sample. We argue that these two approaches are inadequate. We discuss two statistical models, namely,
fixed and mixed effects Analysis of Variance (ANOVA), which views individual features as replicate
measurements of a protein’s abundance, and explicitly account for this redundancy. We demonstrate,
using a spike-in and a clinical data set, that the proposed models improve the sensitivity and specificity
of testing, improve the accuracy of patient-specific protein quantifications, and are more robust in the
presence of missing data.
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1. Introduction
Liquid chromatography coupled with mass spectrometry

(LC-MS) is a method of choice for identification and quanti-
fication of proteins and peptides in complex biological mix-
tures.1 A widespread use of LC-MS is within the label-free
shotgun (“bottom up”) workflow, which enables nontargeted
analysis for discovery-oriented research. With this workflow,
proteins in a sample are enzymatically digested into peptides,
and subjected to chromatographic separation, ionization, and
mass analysis. The intensity of the resulting LC-MS features is
used for relative quantification of peptides and proteins.
Tandem mass spectra are typically acquired simultaneously,
and are used to determine the sequence identity of peptides
and proteins underlying a subset of the features. A variety of
software tools have been proposed to extract and quantify LC-
MS features from the acquired spectra, annotate the features
with sequence identity, and align the features across runs.2

Overall, the workflow is now capable of accurately identifying
and quantifying thousands of peptides simultaneously.

Information from LC-MS experiments is subsequently used
as input to statistical and machine learning analysis steps,
which either compare protein abundance between sample
groups (e.g., test proteins for differential abundance between

patients with a disease and healthy controls), or analyze protein
abundance of individual biological subjects (e.g., perform
unsupervised clustering or supervised classification of indi-
vidual patients, based on their quantitative protein profiles).
In most cases, a desirable unit of analysis is a protein. However,
the currency of LC-MS experiments are spectral features that
correspond to peptide ions, and multiple such features can be
observed for a protein of moderate and high abundance.
Although features from the same protein are expected to
present a consistent quantitative profile across all samples and
runs, random variation and experimental and biological arti-
facts can distort the profiles of some features, and deriving
protein-level conclusions in these cases is not straightforward.

As a partial solution to this problem, researchers frequently
continue statistical and machine learning analysis on the per-
feature basis.3 With this approach, group comparison requires
an ad hoc decision rule, for example, a protein is considered
differentially abundant if a predefined number of features has
statistically significant changes in the same direction. For
protein quantification of individual biological subjects, such
as patients, the per-feature analysis provides no clear solution.

An alternative approach is to summarize intensities of all
features of the protein using a quantitative summary, for
example, by averaging feature intensities on the log scale.4,5

This yields a single number per protein per run that can be
compared across groups of subjects, or used to quantify the
protein abundance in individual subjects.

Here we argue that, from the statistical methodology per-
spective, both per-feature and averaging approaches are in-
adequate for protein quantification. We examine the statistical
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properties of these methods and note that they suffer from
multiple drawbacks. We further note that the averaging ap-
proach is a special instance of an Analysis of Variance (ANOVA)
model.6,7 This approach relies upon a series of very specific
assumptions which are implicitly made, but rarely explicitly
verified. We verify the plausibility of the assumptions, and
extend the approach with a more general family of ANOVA
models where some of the assumptions are relaxed. We show
that instances of this family of models improve the sensitivity
and the specificity of finding true changes in abundance, and
have a more accurate subject quantification.

In the following, we focus on comparative experiments where
distinct individuals are selected in each group. We do not
consider experiments which involve repeated measurements,
that is, experiments where groups correspond to time points
and samples are collected from the same set of individuals
across time. We further assume that the input LC-MS features
are reliably identified and quantified, and are unambiguously
grouped into proteins. In other words, we omit from consid-
eration LC-MS features with no reliable identification, and
peptide sequences with ambiguous protein memberships. We
also assume that feature abundance values have been ap-
propriately normalized across runs.

We illustrate our discussion using two data sets: one a
controlled spike-in data set2 where we evaluate the methods
by their ability to detect true fold changes, and the other a
clinical data set of patients with cardiovascular disease,8 where
the methods are evaluated by comparing LC-MS quantifications
to clinical assay measurements on the same proteins and
patients. Throughout the text, we give examples from clinical
research; however, the discussion can be applied to any label-
free quantitative proteomic experiment.

2. Methods

2.1. Statistical Analysis of LC-MS Data: Goals and Proce-
dures. Many proteomic investigations involve large groups (also
called populations) of distinct biological individuals, such as
patients, animals, or plants. While it is impossible to collect
samples from each individual in the population, a good
experimental design includes samples from multiple individuals
selected from the populations. The individuals, which are also
called subjects or biological replicates in statistical literature,
help assess the natural biological variation of protein abun-
dance, and distinguish the natural variation from systematic
deviations that are due to treatments or stresses.9 Experimental
designs can also specify replicate mass spectrometry runs on
the same biological sample. The runs, called technical replicates,
help assess the additional variation introduced into the mea-
surements by the experimental procedure.

A typical goal of group comparison is to determine whether
the average protein abundance is different between two or
more populations of interest, for example, between diseased
patients and healthy controls. A statistical model is necessary
to characterize the biological and the experimental variation,
and to expand the scope of conclusions from the selected
individuals to the entire populations. A summary quantity
(called test statistic) is derived based on the model, and the
strength of evidence in favor of differential abundance is
quantified by a p-value. Differential abundance is concluded
when the p-value of the comparison is below a predefined
cutoff. When tests are performed for multiple proteins in
parallel, of interest is the False Discovery Rate (FDR), defined
as the expected proportion of falsely detected changes in the

list of differentially abundant proteins. A multiple comparisons
procedure, such as the one proposed by Benjamini and
Hochberg,10 adjusts the p-values to control for the FDR. A list
of proteins with the adjusted p-values below a cutoff has the
FDR of at most the cutoff.

When the true status of the proteins is known, approaches
to group comparison can be compared, for a fixed FDR,
according to their sensitivity (or statistical power, i.e., the ability
to detect true changes in abundance) and specificity (i.e., the
number of false positive discoveries). In addition, the models
can be evaluated with respect to bias and variance of estimates
of fold changes of protein abundance between groups. Bias is
a systematic deviation of an estimated quantity from the true
value.9 When quantifying proteins from mass spectra, bias can
be introduced by features with missing intensities, which tend
to appear more frequently in features with low signal. Variance
refers to the uncertainty in the estimated abundance. A
preferred summarization procedure is the one that avoids the
bias and reduces the variance.

In addition to comparing average protein abundance in the
underlying populations, it is often of interest to separately
quantify protein abundance for each individual (equivalently,
for each subject or biological replicate) in the study from
multiple features, and on a continuous scale that is comparable
across runs. We call this procedure subject quantification.
Results of subject quantification are used as input for subse-
quent analysis steps such as clustering or classification. The
importance of statistical modeling for accurate subject quan-
tification is often overlooked. However, a statistical model helps
viewing the procedure as an estimation of the “true” abundance
of the protein in the individual from noisy measurements, and
appropriately deriving the summary. The performance of
model-based subject quantification can be evaluated, for
example, by comparing it to independent external measure-
ments on the same protein.

True biological signals are widely viewed as multiplicative
in nature; therefore, in the following, we consider abundance
of the LC-MS features on the logarithmic scale. Application of
the logarithm has multiple advantages as compared to working
with ratios of abundance. In particular, it provides a natural
way for modeling the replicate structure of the data within the
Analysis of Variance (ANOVA) framework. The use of ANOVA
models in proteomic applications has recently been intro-
duced.9,11-14 Here, we systematically present and contrast
several such models, and compare their properties for group
testing and subject quantification.

In the following, we assume that the experiment consists of
g disease groups with n distinct individuals in each group. Each
protein is represented by f peptide features. We will also assume
for simplicity that the data set has no technical replicates (i.e.,
each run corresponds to a different individual); however,
extensions to experiments with technical replicates are straight-
forward. When a data set contains an equal number of subjects
in each disease group, and when peptide features have no
missing observations, the data set is called balanced. The
balance is desirable because it optimizes the precision of our
conclusions as compared to the unbalanced case, and many
quantities of interest can be estimated by averages. Table 1
summaries the formulas used for group comparison and
subject quantification for the models that we consider in the
balanced case, and extensive additional information on these
models is provided in Supporting Information.
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2.2. Per-Feature Model. 2.2.1. Basic Model. The statistical
model underlying this approach is shown in Figure 1. The
model considers separately each feature, and decomposes its
abundance across runs into a systematic contribution Gij of
disease group i to feature j, and a random contribution of
biological and technical variation εijk which is normally dis-
tributed with feature-specific variance σj

2. As such, the model
is a multigroup generalization of the model underlying a two-
group t test. The approach has a practical advantage in that it

is simple, and a technical advantage in that it specifies a
separate variance of the error for each feature. The latter is
particularly appropriate for LC-MS data, where variation typi-
cally depends upon intensity, and differs across features.

The main drawback of using this model for proteins is the
lack of formal protein inference for both group testing and
subject quantification. For testing, an ad hoc rule requires a
predefined number of differentially abundant features to claim
the differential abundance of the protein as a whole, and this

Table 1. Model-Based Quantities Used for Group Comparison and Subject Quantificationa

a The quantities are derived for the case of a balanced design, i.e., for situations where each group has an equal number of subjects, and peptide
features have no missing observations. See Table 2 for notation.

Table 2. Descriptions of Basic Quantities Used in Table 1a

notation description approach used in

jyij. average intensity of feature j in group i per-feature
jyi.. average intensity of group i “average”, fixed, and mixed
ỹi.. median polish-based average intensity of group i median polish extension to “average”

σ̂j
2 estimated variance of measurement error for feature j per-feature; feature-specific variance extensions

σ̂2 estimated variance of measurement error “average”, fixed, and mixed
σ̂S

2 estimated between-subject variance mixed
σ̂0

2 prior estimate of measurement error variance Empirical Bayes in per-feature, “average”, and fixed models
σ̃0

2 prior estimate of overall variance (fσS
2 + σ2) in mixed model Empirical Bayes in mixed model

d0 degrees of freedom associated with prior estimate of variance Empirical Bayes models

a Where i ) 1, ..., g is a group, j ) 1, ..., f is a feature, and k ) 1, ..., n is a subject.

Figure 1. Per-feature ANOVA. i is the index of a disease group, j the index of a feature, and k the index of a subject. ∑i)1
g Gij ) 0 is an

identifiability constraint that is required for estimation of the model parameters. σj
2 is the variance of the measurement error associated

with feature j. All random deviations are independent.
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is undesirable since the statistical properties of the overall
procedure, such as the FDR in the resulting protein list, are
unknown. There is no clear subject-level protein quantification.

In addition, the approach suffers from technical drawbacks.
First, the model for each feature is based on a smaller number
of data points than a model which combines the intensities
from all features. Second, the per-feature approach results in
an overall larger number of tests, and therefore, requires a
stronger adjustment for multiple testing than when working
with proteins. As we show in section 4, these two facts
undermine the sensitivity and specificity of detecting differ-
ences in abundance at the level of features. Finally, peptide
abundances within a protein are strongly correlated. The
correlation undermines the calculation of the FDR, and the
error rate in the list of differentially abundant features can
deviate substantially from the stated level.

2.2.2. Extensions. When the number of individuals per
group is small, estimates of error variances σj

2 in Figure 1 can
be unreliable. This can be remedied somewhat by means of
an Empirical Bayes procedure proposed in the context of gene
expression microarrays.3,15 In addition to the model in Figure
1, we assume that (1/σj

2) ∼ [(1/d0s0
2)�d0

2 ], where s0
2 and d0 are

constants that we estimate empirically from the entire collec-
tion of peptide features in the data set. In other words, the joint
analysis of peptide features provides additional information on
the variance, which is equivalent to a prior data set with
estimated variance s0

2 based on d0 degrees of freedom.
The Empirical Bayes approach provides a more accurate

estimation of feature-specific variation, modifies the testing
procedure as shown in Table 1, and has been shown to improve
the sensitivity and the specificity of the individual tests.
However, this extension does not address the other drawbacks
of the per-feature model. The Empirical Bayes procedure is
applicable to the general class of linear models, and in the
following sections we apply it to all the models that we
consider.

2.3. Averaging of Intensities. 2.3.1. Basic Model. An alter-
native to the per-feature analysis is to average all feature
intensities of a protein within a run, and use this summary for
the subsequent analyses. The model used in this case, that we
call “average model”, decomposes the summaries into the
systematic contribution Gi of disease group i, and a random
deviation εik which is normally distributed with variance σ2 as
shown in Figure 2. The resulting model is quite simple. Since
only one model is fit for each protein, it provides protein-level
conclusions of testing. Averaging of feature intensities in each
run yields an obvious subject quantification. The model also
produces a smaller number of tests and requires a less stringent
adjustment for multiple comparisons.

However, the approach has several disadvantages. First,
averaging reduces the nominal number of data points, and
loses the information from individual features. Second, the

“average model” treats signals from each peptide feature
equally, and does not account for inconsistencies or uncertain-
ties in the profiles of some features. Finally, averaging does not
appropriately account for missing data or outliers. As we show
in section 4, these factors can result in a reduction of sensitivity
and specificity of group comparisons, and can produce biased
subject quantification.

2.3.2. Extensions. The Empirical Bayes approach can be
used to extend the “average model” similarly as in section 2.2.
Another possible extension is based on Tukey median polish,16

a robust alternative to averaging used, for example, by the RMA
normalization procedure for gene expression microarrays.17

Briefly, the procedure can be viewed as fitting an ANOVA model
to a two-way table, where rows denote runs and columns
denote peptide features. The approach proceeds by iteratively
subtracting the medians of the rows or columns from feature
intensities, until the median values are close to zero. The fitted
intensities are then obtained by adding the remaining values
in the table to the original intensities. The row averages of the
fitted intensities are subject quantifications, and are used as
abundance measures in Figure 2. The approach produces
subject quantification which is more robust to outliers than a
simple average; however, it does not address the other draw-
backs of the averaging.

2.4. Fixed Effects Analysis of Variance. 2.4.1. Basic
Model. The fixed effects Analysis of Variance (ANOVA) model,6,7

shown in Figure 3, views features mapped to the same protein
as replicate measurements of protein abundance, and explicitly
describes the structure of this replication. Intensity of each peak
is decomposed into the contribution of disease group Gi

(expressing the systematic difference in protein abundance
between groups), and the contribution of the LC-MS feature
Fj that produced this value (expressing the fact that some
peptides have a systematically higher ionization efficiency than
the others). The model also contains a statistical interaction
term (G × F )ij, which describes potential deviations of indi-
vidual LC-MS features from the average profile, which can be
due to both biological interferences and experimental artifacts.
In cases where feature profiles are perfectly consistent, the
interaction term is not necessary and can be dropped.

The model also specifies the deviation of each individual (i.e.,
biological replicate, or subject) S(G )k(i ) from the overall group
mean, and expresses the fact that some individuals have a
higher natural abundance of the protein than others. Notation
S(G)k(i) is read as “subject within a group”, and reflects the
property of comparative experiments where each individual can
only belong to a single group. A different model, and a different
notation, is necessary, for example, in experiments with
repeated measurements where groups correspond to time
points, and samples from the same individual are collected
across time. Such situation is beyond the scope of this
discussion. The last term in the model εijk describes the

Figure 2. Average ANOVA. i is the index of a disease group, and k the index of a subject. ∑i)1
g Gi ) 0 is an identifiability constraint that

is required for estimation of the model parameters. σ2 is the variance of the measurement error. All random deviations are independent.
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remaining deviations of peak intensity, and is viewed as
nonsystematic replicates of a normally distributed measure-
ment error with constant variance σ2.

The terms in the model are estimated from the data using
procedures such as least-squares or maximum likelihood,6,7

and results of the estimation can be used for both group testing
and subject quantification. Testing in this model involves
comparing the estimated abundances of groups µ + Gi, and
making a decision on whether the differences exceed the
measurement error. Subject quantification amounts to report-
ing the estimated contributions µ + Gi + S(G )k(i). In the case of
a balanced design, these model-based quantities are based on
sample averages, and are shown in Table 1. When a balanced
experiment cannot be achieved, the model-based summaries
differ from averages, and have been shown to provide a closer
to optimal solution. Overall, the joint modeling of all peaks of
the protein using ANOVA makes the best use of the available
data. We show in section 4 that it increases the sensitivity and
the specificity of testing, and improves the accuracy of subject
quantification.

The “fixed effects” in the model name refers to the fact
that the individuals selected for the study are considered fixed,
and the model limits the scope of our conclusions to these
specific individuals. For example, for testing, this implies that
we are interested in differences in protein abundances in the
specific individuals selected for experiment, and the only
randomness associated with the measurements is the experi-
mental noise. While this type of inference may be appropriate
for an initial screening, it is inappropriate for a validation
experiment where we would like to expand the scope of the
conclusions to a larger population of patients, and individuals
in the study are viewed as random instances from this larger
population. This is further discussed in section 2.5.

2.4.2. Extensions. The main disadvantage of the model is
that it assumes a common variance of error for all features,

and this is not always realistic for LC-MS data. We can specify
an alternative version of the model where we replace σ2 in
Figure 3 with feature-specific variances σj

2. In this case, the
contribution of each feature to the model-based quantities is
inversely proportional to its variation. As before, the model in
Figure 3 can also be extended with an Empirical Bayes
approach (Table 1).

2.5. Mixed Effects Analysis of Variance. Figure 4 displays
an alternative mixed effects ANOVA model. In contrast to Figure
3, the model views the individuals in the study as a random
selection from larger underlying populations. Here the goal of
testing is not to compare means of protein abundance between
the individuals selected for the study, but to compare the
average abundances in the entire underlying populations. The
model reflects the change in the scope of our conclusions by
expressing the contributions of individuals S(G )k(i ) as random
nonsystematic quantities, which have a normal distribution
with variance σs

2, and are independent from the measurement
error. The name “mixed effects” emphasizes the fact that the
model contains both fixed and random terms in addition to
the measurement error.

As in the case of fixed effects, testing involves comparing
the estimated abundances of groups µ + Gi, and subject
quantification involves reporting the estimated contributions
µ + Gi + S(G )k(i ). However, the introduction of the random term
has multiple implications. First, it implies that the variance of
peak intensities is now assumed to be a combination of σs

2 and
σ2. Second, it implies that peaks intensities from the same
protein and the same individual are assumed to be correlated,6,7

that is, their abundance tends to change from subject to subject
stochastically, but in the same direction. The structure of the
correlation is shown in Supporting Information. In the special
case of balanced data sets, the terms of the model can be
estimated from the data using sample averages summarized
in Table 1. We show in Supporting Information that in the

Figure 3. Fixed effects ANOVA. i is the index of a disease group, j the index of a feature, and k the index of a subject. ∑i)1
g Gi ) ∑j)1

f Fj

) ∑i)1
g (G × F )ij ) ∑j)1

f (G × F )ij ) 0 and ∑k)1
n S(G)k(i) ) 0 are identifiability constraints that are required for estimation of the model parameters.

σ2 is the variance of the measurement error. All random deviations are independent.

Figure 4. Mixed effects ANOVA. i is the index of a disease group, j the index of a feature, and k the index of a subject. ∑i)1
g Gi ) ∑j)1

f Fj

) ∑i)1
g (G × F )ij ) ∑j)1

f (G × F )ij ) 0 are the identifiability constraints that are required for estimation of the model paramaters. σS
2 is the

between-subjects variance, and σ2 is the variance of the measurement error. All random deviations are independent.
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balanced case the approach is equivalent to the “average
model” for the purpose of group testing. When a balanced
experiment cannot be achieved, the model often requires more
sophisticated estimation procedures such as Restricted Maxi-
mum Likelihood (REML). Similarly to the fixed effects ANOVA,
the model-based quantities differ from the averages. We
illustrate in section 4 that mixed effects ANOVA outperforms
the “average model” in unbalanced cases.

Overall, extending the scope of conclusions to a larger group
of individuals affects decisions of differential abundance and
subject quantification. The model frequently yields more
conservative decisions of differential abundance, and has a
lower sensitivity as compared to its fixed effects counterpart.

2.5.1. Extensions. As in the case of the fixed effects, the
model can be extended to incorporate feature-specific vari-
ances, replacing σ2 with σj

2 in Figure 4. Furthermore, the
approach can also be extended with the Empirical Bayes
approach, as shown in Table 1.

3. Data Sets

We evaluate the proposed models using two data sets. The
first is a controlled mixture, where 6 proteins were spiked into
human serum in known concentrations according to the latin
square design in Table 3. Each mixture was acquired in
triplicates on the Thermo Electron Fourier transformed-LTQ
mass spectrometer, and LC-MS features were quantified,
aligned, and annotated with peptide and protein identities
using the Superhirn software.2 Between 2 and 95 peptide
features were reliably identified for each spiked protein;
however, some features contained up to 33% of missing values.

We use the data set to evaluate protein quantification
approaches in terms of sensitivity (i.e., the ability to detect true
fold changes) and specificity (i.e., the ability to prevent
discovery of false changes). The layout of the latin square design
enables us to make this evaluation for multiple fold changes,
starting from multiple abundance baselines, and for several
proteins and runs, thereby averaging out potential protein- or
run-specific artifacts.

The second data set came from a clinical investigation of
246 patients with cardiovascular disease, comparing patients
with acute coronary syndrome (ST segment elevation myocar-
dial infarction and non-ST segment myocardial infarction) to
patients with unstable angina, stable angina, and control
patients without coronary artery disease. Albumin was depleted
prior to tryptic digest, and each sample was analyzed with a
single replicate using Thermo-Finnigan linear ion-trap mass
spectrometry. LC-MS features were quantified, aligned, and
annotated with peptide and protein identities as described
previously.18 When a feature in a run could not be detected,
the procedure reported the background signal, and therefore,

the data set contains no missing values. To reduce the number
of peptides with ambiguous mappings to protein isoforms, each
peptide was mapped to the underlying ENTREZ GeneID. Only
peptides with unambiguous gene IDs, and genes with at least
two peptides, were retained for the subsequent analysis.
Overall, the procedure identified 77 protein groups, with 2-169
peptides per group. For protein groups with over 74 peptides,
74 peptides were randomly selected for further analysis. In
addition to the LC-MS data, 11 of the 77 proteins were
measured on the BN Pro Spec Nephelometer (Siemens Health-
care Diagnostics).

We evaluate the sensitivity of group testing on this data set
by comparing the number of differentially abundant proteins
in all pairwise comparisons of disease groups for a fixed FDR.
Furthermore, we evaluate subject-level protein quantification
by examining the correlation of protein abundance estimated
for the patients by each model with the nephelometry
measurements.

4. Results

4.1. Model Fitting. Figure 5 shows experimental measure-
ments for an example protein, for both the spike-in and clinical
data sets. For the spike-in data set, the fold changes in
concentrations of the spiked proteins are fairly large, and
therefore, changes in feature intensities are clearly visible, and
are as expected. However, missing intensities tend to appear
in mixtures where the protein was spiked at lower concentra-
tions, and for features with a lower overall signal. For the
clinical example, the fold changes between disease groups are
more subtle, and some features produce a somewhat contra-
dictory evidence of differential abundance.

For each data set, we fit the models discussed in section 2,
jointly to all groups and separately for each protein, using the
Restricted Maximum Likelihood (REML) method implemented
in the mixed procedure of the SAS software system (SAS
Institute Inc., Cary, NC). Supporting Information contains
examples of the SAS code corresponding to the models. Since
the models assume normally distributed random quantities and
a constant variance of measurement errors across groups, we
verified these assumptions in a series of randomly selected
proteins, using normal quantile-quantile plots and likelihood-
ratio tests of constant variance. The results (not shown for lack
of space) do not indicate gross departures from the assumptions.

The feature x group interaction in the ANOVA models
represents deviations of some features from the consensus
protein profile. For proteins with consistent patterns over all
features, the model that contains feature-specific variances may
overfit the data, and create problems with convergence of the
REML procedure. The removal of interaction terms, and/or
manual removal of some perfectly collinear features may be
necessary. In our data sets, this was the case for 17 background
serum proteins in the spike-in data set, and 18 proteins in the
clinical data set.

The models were used to test each protein for differential
abundance in all pairwise comparisons of groups, and to report
the p-values of the tests. The p-values were then adjusted for
multiple comparisons using the approach by Benjamini and
Hochberg,10 separately for each pairwise comparison. Since the
per-feature model requires an ad hoc rule to make protein-
level conclusions, we take an “aggressive” approach, and report
the feature with the strongest evidence in favor of differential
abundance for a protein over all features. Subject quantifica-
tions were derived as described in Table 1.

Table 3. The Latin Square Design Used to Create the Spike-in
Data Seta

mixture

protein 1 2 3 4 5 6

Myoglobin (horse) 800 25 50 100 200 400
Carbonic anhydrase (bovine) 400 800 25 50 100 200
Cytochrome C (horse) 200 400 800 25 50 100
Lysozyme (chicken) 100 200 400 800 25 50
Alcohol dehydrogenase (yeast) 50 100 200 400 800 25
Adolase A (rabbit) 25 50 100 200 400 800

a Each entry is the amount of injected protein per sample (fmol).
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Proteomic experiments often have a relatively small sample
size. To make the discussion relevant to a typical experimental
situation, results from the clinical data set were obtained with
a reduced version where 10 subjects were randomly selected
from each disease group, unless stated otherwise. Since there
are no missing values, the reduced data set is balanced.

4.2. Group Testing: Sensitivity. Figure 6 shows the p-values
of pairwise comparisons of abundance that correspond to
2-fold changes of the spiked concentrations, summarized over
the 6 spiked proteins, and starting from a series of baselines.
Several conclusions can be made from the figure.

First, the “average model” results in the lowest sensitivity.
This is due to a smaller number of data points as compared to
the fixed and mixed ANOVA, and to the presence of missing
values in the data set. As discussed in section 2.5, averaging of
the intensities is not an optimal summary in the presence of
missing data. Second, the per-feature model has a better
sensitivity than the “average model”. This result is an artifact
of our decision rule where the feature with the smallest p-value
is selected to describe the results for the whole protein.
However, even with this strategy, the increase in sensitivity is
small. The reasons for this are a smaller number of data points
per feature, and the fact that the per-feature approach involves
a larger number of tests, and requires a more conservative
adjustment for multiple comparisons. Moreover, as we will see

in section 4.3, the relative increase of sensitivity with the per-
feature approach has the price of a reduced specificity.

Third, the fixed effects ANOVA model outperforms the per-
feature model and the “average model” in terms of sensitivity.
The sensitivity increases with the increasing abundance base-
line for all but the highest baseline. The highest baseline
reaches the upper limit of the dynamic range, and makes it
more difficult to detect the 2-fold change. Finally, the fixed
effects model produces stronger evidence in favor of differential
abundance than the mixed effects model. This result is typical
for this type of ANOVA models, and is due to the fact that
results from the mixed effects model refer to a larger scope of
individuals, the individuals from the larger population, than
the fixed effects model.

Figure 7a,b shows the number of differentially abundant
proteins detected in all pairwise comparisons of disease groups
in both the reduced and full clinical data sets, at the estimated
FDR of 0.05. As in the case of the spike-in data set, the fixed
effects ANOVA is the most sensitive. Since the reduced data
set is fully balanced, and the full data set is nearly balanced,
the results of the mixed ANOVA are identical to the results of
the “average” model. The full data set yields a larger number
of detected differences than the reduced data set due to an
increased sample size; however, the fixed effects model main-
tains the highest sensitivity.

Figure 5. Representative quantitative protein profiles in the experimental data sets. X-axis: mixture type or disease group. Y-axis:
average log-intensity of a feature, on average over the replicates. Each line represents a feature. (a) Spike-in data set: Alcohol
dehydrogenase. (b) Clinical data set: protein 116844.

Figure 6. Sensitivity of the four basic models at detecting a 2-fold change in the spike-in data set, starting from five abundance baselines.
X-axis: abundance baseline. Y-axis: -log2 (FDR-adjusted p-value). Each box contains the middle 50% of the proteins; the line within
the box is the median. The higher the value on the y-axis, the stronger the evidence for differential abundance. The horizontal line
corresponds to the FDR cutoff of 0.05.
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Results from extensions to the models are shown in Sup-
porting Information. The extensions do not improve the
sensitivity in these specific data sets. However, the results are
dependent on the proteins under consideration and on the
extent of changes in abundance in the biological system, and
therefore, the extensions can be helpful in other situations. In
particular, Supporting Information shows the results of tests
of equal variance between features in the cardiovascular data
set for the fixed effects and mixed effects models, which
indicate that allowing for feature-specific variances in these
ANOVA models is appropriate.

4.3. Group Testing: Specificity. In the spike-in data set, only
6 proteins changed in concentration between mixtures, and
the concentration of the remaining proteins was kept fixed.
Therefore, the models can be compared by their ability to
prevent false positive discoveries of differential abundance. For
each pairwise comparison of mixtures, the models were used
to (1) test all proteins for differential abundance, (2) rank the
proteins according to the resulting adjusted p-values, and (3)
record the proportion of false positive discoveries while varying
differential abundance cutoffs. Figure 7c displays the resulting
proportion of false positives over all pairwise comparisons, as
a function of the total number of discoveries for different
cutoffs.

As can be seen from the figure, the per-feature approach is
the least specific, and produces the largest proportion of false
positive discoveries as compared to the other models. This is
expected since a single feature is more likely to appear
differentially abundant by random chance than a consensus
summary of all the data for the protein. The “average model”
has an intermediate specificity, and the fixed ANOVA model is
the most specific and the most robust to experimental artifacts.
Supporting Information shows that extensions to the basic
models do not improve the specificity of finding differences in
this data set.

4.4. Subject Quantification. The clinical data set contains
biological replicates, and can be used to investigate subject
quantification. We consider 11 proteins for which independent
nephelometry measurements were made for each patient, and
the reduced version of the data set. Subject quantifications were
derived from the “average model” and from fixed and mixed
ANOVA models as described in Table 1. Since the per-feature
modelhasnosubjectquantification,weomititfromconsideration.

We anticipate that more accurate models produce higher
Pearson correlations with the nephelometry measurements.

Figure 8a illustrates the improvements in correlations of the
quantifications derived from the ANOVA models, as compared
to the “average model”. The correlations are roughly similar
between the models for all proteins, which is a typical conclu-
sion for fully balanced data sets. The highest improvement was
obtained by applying the ANOVA models to the proteins where
the “average model” performed poorly (i.e., where correlations
with the nephelometry measurements were less than 0.4).
Extensions to the basic models, in particular the median polish,
did not improve the results substantially in this data set.

4.5. Impact of Missing Intensities: Group Testing. When
estimating differences in protein abundance between groups,
missing intensities of LC-MS features can introduce a bias, that
is, a systematic deviation of the estimation from the true value.
Here we evaluate the models according to their ability to limit
the bias. To this end, we consider 10 randomly selected proteins
in the reduced clinical data set, and artificially remove 30% of
feature intensities for each of the proteins. We consider two
scenarios for the removal. The first mimics noninformative
missing data, and removes features with an equal probability.
In the second scenario, we remove features with a probability
that is inversely proportional to the abundance, so that low-
abundant features are more likely to have missing values. The
artificial data sets from the two scenarios were then used to fit
all the models, and to derive model-based estimates of changes
in abundance for all pairwise comparisons of groups. We
calculate the bias as the deviation of the estimates in the
presence of missing values from the corresponding estimates
in the complete data set. For the per-feature model, the bias
was calculated by computing the average deviation across the
features.

Figure 8b summarizes the extent of the resulting bias, and
points to two conclusions. First, when missing values appear
more frequently at lower feature abundances, this increases
the bias as compared to the case of noninformative missing.
This is expected when nonmissing intensities are biased toward
higher abundances. Second, the fixed and mixed ANOVA
models are more robust to the missing data, and result in a
smaller bias as compared to the per-feature and the “average
model”. The improved performance of the ANOVA is due to
the fact that, in the presence of missing values, the estimates
deviate from sample averages, and are more refined and more
optimal consensus patterns over all features. Therefore, ANOVA-

Figure 7. (a and b) Sensitivity of the four basic models at detecting changes in abundance in the clinical data set. Each circle shows the
number of proteins with at least one detected pairwise difference between disease groups after the FDR cutoff 0.05. (a) Reduced data
set with 50 subjects. (b) Full data set with 246 subjects. (c) Specificity of the four basic models at detecting changes in abundance in
the spike-in data set. X-axis: number of differences in a comparison between two mixtures. Y-axis: false positive rate in all pairwise
comparisons of mixtures. More specific models produce lower curves.
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based models are particularly beneficial in the presence of
missing data, and for other unbalanced experimental designs.

4.6. Impact of Missing Intensities: Subject Quantifica-
tion. The two data sets with artificially removed observations
were also used to illustrate the robustness of the approaches
to missing data with respect to subject quantification. We
expect that more accurate approaches produce higher Pearson
correlations with the nephelometry measurements, despite the
missing data. Figure 8c summarizes the improvements in
the correlations of the subject quantifications derived from the
ANOVA models as compared to the “average model” on these
data sets.

First, as can be seen from the x-axis of the figure, the
correlations derived from the “average model” are slightly lower
than in the absence of missing intensities in Figure 8a,
reflecting the extra uncertainty resulting from missing observa-
tions. Further, the ANOVA models show a greater relative
improvement, up to 2-fold, in correlations over the “average
model” than in Figure 8a. Models with a feature-specific
variance component show the most improvement for these
proteins.

5. Discussion

As we have seen, fixed and mixed effects ANOVA are more
sensitive and specific for group testing, and more accurate for
subject quantification than the per-feature and averaging
approaches, in particular in the presence of abundance-
dependent missing data. We therefore recommend the general
ANOVA framework for protein-level quantification. The differ-
ence between the fixed and mixed effects lies primarily in the
scope of inference for group testing. The fixed effects model
restricts the scope of conclusions to the individuals in the study,
and results in a higher power of tests. We recommend this
model in the initial screening stage. The mixed effects model
extends the scope of the inference to the entire underlying
populations of individuals, and is more appropriate for inves-
tigations at the validation stage. Even though the mixed effects
model loses power as compared to the fixed effects, it outper-
forms both per-feature and averaging approaches, in particular
in the presence of missing data.

The superior performance of the ANOVA models over the
per-feature analysis and averaging is due to the fact that they

capitalize on the redundancies provided by multiple LC-MS
features, and explicitly model the replicate structure of the data.
This underscores the importance of working with the observed
feature intensities directly, as opposed to using sums, averages,
or ratios of intensities from different samples as is sometimes
done. The log transformation translates a multiplicative signal
into an additive signal, and facilitates the development of such
models.

The fixed and mixed models that we discussed are not the
only possible ANOVA models for LC-MS data. The ANOVA
framework is general and flexible, and can accommodate a
variety of experimental situations and settings. In fact, changes
in experimental design such as repeated measurements, the
introduction of technical replication, or the presence of other
important sources of variation will typically require changes
or additions of model terms, which in turn will affect group
testing and subject quantification. Conversely, some sources
of variation, such as deviations of features from the overall
abundance profiles, or natural variation between individuals
in the study, may be relatively small. The corresponding terms
can then be removed from the model, as has been done, for
example, in ref 14. However, the assumption of negligible
variation needs to be verified explicitly and anew in each
experimental setting. Development of a model that appropri-
ately represents the specific experimental situation can be a
difficult task, and we recommend consulting with a statistician
whenever possible.

Extensions examined in this work, namely, feature-specific
variances, Empirical Bayes ANOVA, and Tukey median polish,
do not substantially improve the sensitivity and specificity of
the original models in these particular data sets. However, they
may be helpful in other problems. For example, the spike-in
data set contains no biological replicates, and is therefore less
variable than a typical biological data set. Empirical Bayes
ANOVA is geared toward improving performance specifically
in cases of high variability and small sample size. Furthermore,
tests of equal variance across features performed on these two
data sets rejected the null hypothesis for many proteins,
indicating that feature-specific variance can improve the
performance of the models in other problems.

The ANOVA framework supports numerous additional ex-
tensions. For example, throughout the paper, we assumed that

Figure 8. (a) Accuracy of subject quantification in the clinical data set. X-axis: correlation of protein abundances derived from the
“average model” and the nephelometry measurements. Y-axis: ratio of ANOVA-based correlations and the “average model”-based
correlations. Points above the horizontal line indicate improved quantification. (b) Effect of missing intensities on estimates of differences
between disease groups. X-axis: model type. Y-axis: absolute value of bias in estimation of the differences after removing 30% of
intensities. Lower boxes correspond to more robust models. (c) Same as panel a, but after removing 30% of feature intensities, with
higher probability of removal for low-abundance features.

Protein Quantification in Label-Free LC-MS Experiments research articles

Journal of Proteome Research • Vol. xxx, No. xx, XXXX I

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

R
C

E
L

O
N

A
 o

n 
O

ct
ob

er
 1

9,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 S
ep

te
m

be
r 

18
, 2

00
9 

| d
oi

: 1
0.

10
21

/p
r9

00
61

0q



peptide features are unambiguously mapped. It is possible to
develop extensions to these procedures that would simulta-
neously deconvolute ambiguous protein memberships and
provide quantification.19 Furthermore, the models can be
extended to protein quantification from other workflows, such
as labeling workflows and selected reaction monitoring (SRM).
While these extensions may also require changes in the specific
model terms, as well as in the quantities used for group testing
and subject quantification, the general underlying principle will
remain the same.

Supporting Information Available: Supplemental
materials containing model-based testing quantities, results
and discussion of extensions to the quantification models, and
SAS code. This material is available free of charge via the
Internet at http://pubs.acs.org.

References
(1) Aebersold, R.; Mann, M. Nature 2003, 422, 198–207.
(2) Mueller, L. N.; Rinner, O.; Schmidt, A.; Letarte, S.; Bodenmiller,

B.; Brusniak, M.; Vitek, O.; Aebersold, R.; Muller, M. Proteomics
2007, 7, 3470–3480.

(3) Brusniak, M.; Bodenmiller, B.; Campbell, D.; Cooke, K.; Eddes, J.;
Garbutt, A.; Lau, H.; Letarte, S.; Mueller, L.; Sharma, V.; Vitek, O.;
Zhang, N.; Aebersold, R.; Watts, J. BMC Bioinf. 2008, 9.

(4) Higgs, R. E.; Knierman, M. D.; Gelfanova, V.; Butler, J. P.; Hale,
J. E. J. Proteome Res. 2005, 4, 1442–1450.

(5) Patil, S. T.; Higgs, R. E.; Brandt, J. E.; Knierman, M. D.; Gelfanova,
V.; Butler, J. P.; Downing, A. M.; Dorocke, J.; Dean, R. A.; Potter,

W. Z.; Michelson, D.; Pan, A. X.; Jhee, S. S.; Hale, J. E. J. Proteome
Res. 2007, 6, 955–966.

(6) Kutner, M.; Nachtsheim, C.; Neter, J.; Li, W. Applied Linear
Statistical Models, Fifth ed.; McGraw-Hill/Irwin: New York, 2004.

(7) Montgomery, D. C. Design and Analysis of Experiments, Fifth ed.;
John Wiley and Sons: New York, 2000.

(8) Ragg, S.; Fokin, V.; Podgorski, K.; Schadow, G.; Vitek, O.; Kastrati,
A.; Schmig, A.; Lorenz-Braun, S.; Ott, I. Circulation 2007, 116, 575.

(9) Oberg, A. L.; Vitek, O. J. Proteome Res. 2009, 8, 2144–2156.
(10) Benjamini, Y.; Hochberg, Y. J. R. Stat. Soc. 1995, 57, 289–300.
(11) Daly, D. S.; Anderson, K. K.; Panisko, E. A.; Purvine, S. O.; Fang,

R.; Monroe, M. E.; Baker, S. E. J. Proteome Res. 2008, 7, 1209–1217.
(12) Oberg, A. L.; Mahoney, D. W.; Eckel-Passow, J. E.; Malone, C. J.;

Wolfinger, R. D.; Hill, E. G.; Cooper, L. T.; Onuma, O. K.; Spiro, C.;
Therneau, T. M.; Bergen, I. H. R. J. Proteome Res. 2008, 7, 225–
233.

(13) Bukhman, Y. V.; Dharsee, M.; Ewing, R.; Chu, P.; Topaloglou, T.;
Le Bihan, T.; Goh, T.; Duewel, H.; Stewart, I. I.; Wisniewski, J. R.;
Ng, N. F. J. Bioinf. Comput. Biol. 2008, 6, 107–123.

(14) Karpievitch, Y.; Stanley, J.; Taverner, T.; Huang, J.; Adkins, J. N.;
Ansong, C.; Heffron, F.; Metz, T. O.; Qian, W.-J.; Yoon, H.; Smith,
R. D.; Dabney, A. R. Bioinformatics 2009, 1–7.

(15) Smyth, G. K. Stat. Appl. Genetics Mol. Biol. 2004, 3 (1), Article 3.
(16) Mosteller, F.; Tukey, J. Data Analysis and Regression; Addison-

Wesley: Reading, MA, 1977.
(17) Bolstad, B. M.; Irizarry, R. A.; Astrand, M.; Speed, T. P. Bioinfor-

matics 2003, 19, 185–193.
(18) Higgs, R. E.; Knierman, M. D.; Gelfanova, V.; Butler, J. P.; Hale,

J. E. Methods Mol. Biol. 2008, 428, 209–230.
(19) Dost, B.; Bafna, V.; Bandeira, N.; Li, X.; Shen, Z.; Briggs, S. Shared

Peptides in Mass Spectrometry Based Protein Quantification. In
Proceedings of the International Conference on Research in Com-
putational Molecular Biology (RECOMB); Springer: New York, 2009.

PR900610Q

research articles Clough et al.

J Journal of Proteome Research • Vol. xxx, No. xx, XXXX

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

R
C

E
L

O
N

A
 o

n 
O

ct
ob

er
 1

9,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 S
ep

te
m

be
r 

18
, 2

00
9 

| d
oi

: 1
0.

10
21

/p
r9

00
61

0q


