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Abstract—Peptide sequencing from mass spectrometry data is a key step in proteome research. Especially de novo sequencing, the

identification of a peptide from its spectrum alone, is still a challenge even for state-of-the-art algorithmic approaches. In this paper, we

present ANTILOPE, a new fast and flexible approach based on mathematical programming. It builds on the spectrum graph model and

works with a variety of scoring schemes. ANTILOPE combines Lagrangian relaxation for solving an integer linear programming

formulation with an adaptation of Yen’s k shortest paths algorithm. It shows a significant improvement in running time compared to

mixed integer optimization and performs at the same speed like other state-of-the-art tools. We also implemented a generic

probabilistic scoring scheme that can be trained automatically for a data set of annotated spectra and is independent of the mass

spectrometer type. Evaluations on benchmark data show that ANTILOPE is competitive to the popular state-of-the-art programs

PepNovo and NovoHMM both in terms of runtime and accuracy. Furthermore, it offers increased flexibility in the number of considered

ion types. ANTILOPE will be freely available as part of the open source proteomics library OpenMS.

Index Terms—Computational proteomics, de novo peptide sequencing, Lagrangian relaxation, discrete optimization.
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1 INTRODUCTION

MASS spectrometry-based high throughput identifica-
tion of peptides and proteins is a key step in most

proteomics research experiments. It requires fast algorith-
mic solutions with good identification capabilities. De-
pending on the initial situation of the experiment, two
general strategies exist: database-assisted and de novo
identification. If a database for the studied proteins exists
the first method is usually preferred over de novo
sequencing. The crucial step in database search algorithms
like INSPECT [1], SEQUEST [2], Mascot [3], and OMSSA
[4] is to filter the database based on different methods.
INSPECT generates peptide sequence tags (PST) and keeps
only those candidate peptides containing the tag as a
subsequence. SEQUEST uses the parent mass as filter
criterion. After filtering, the query spectrum is scored
against the remaining candidates and a ranking of possible
identifications is produced. In addition to the quality of
the spectrum, database search methods clearly depend on
the correctness and completeness of the database, and
hence on the availability of a suitable set of peptides or
transcripts for the studied organism. Even if this is the
case, factors like alternative splice variants and mutations
can lead to missing identifications.

In such situations, de novo sequencing algorithms provide
an alternative as they infer the sequence from the spectrum
itself without any information collected in databases. In
recent years, many algorithms and software packages were
published, with the most popular being PEAKS [5],
PepNovo [6], NovoHMM [7], Lutefisk [8], Sherenga [9],
EigenMS [10], and PILOT [11]. Most of them use the graph-
theoretical approach introduced by Bartels [12] and con-
struct a so-called N-C spectrum graph which is then used to
search for the correct sequence. See Fig. 1.

Using this formulation, the de novo peptide sequencing
problem can be formulated as the search for the longest
antisymmetric path, an NP-complete problem [13]. Pep-
Novo solves a special case of this problem by restricting
the construction of the spectrum graph, which enables it to
apply a dynamic programming algorithm proposed by
Chen et al. [14], [15]. The restrictions limit the possible
interpretations of each peak to at most one N-terminal
(usually b-ion) and one C-terminal (usually y-ion) ion
type. Liu et al. [16] use tree decomposition to solve the
restricted problem. Bafna and Edwards [17] propose a
variant of the dynamic programming approach that also
allows for more interpretations leading to a polynomial
algorithm of a higher degree. Their algorithm is still
limited to so-called simple ion types, excluding doubly and
triply charged ions that can also aid the identification
process. PILOT [11] uses an integer linear programming
(ILP) formulation for the longest antisymmetric path
problem that is flexible and can be extended to overcome
these restrictions on the cost of efficiency. This allows for
more interpretations of each peak which can lead to
improved identification in situations, where the prominent
b- and y-ions are missing. Furthermore, the ILP formula-
tion can be easily extended in several ways by simply
adding or modifying constraints to further restrict or
modify the set of possible solutions. The approach also
allows for global reasoning such as limiting the number of
a certain amino acid type for each prediction, or, as
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implemented in PILOT, to bound the total mass error of
the predicted peptides.

The main contribution of this work is an improvement of
this approach by an extension that retains most of the
flexibility and leads to a remarkable improvement in
running time. Instead of focusing on computing one
antisymmetric path, we propose a novel algorithm to find
the k best antisymmetric paths. We achieve this by applying
the Lagrangian relaxation technique to the problem and
solving the subproblems with an elegant variant of Yen’s k
shortest paths algorithm. Lagrangian relaxation was al-
ready successfully applied to biological problems such as
sequence alignment [18], protein [19], and RNA [20]
structural alignment or protein threading [21].

An additional contribution of this paper is a generic
probabilistic scoring scheme that can be trained automati-
cally for a data set of annotated spectra and is independent
of the mass spectrometer type. The performance of both, de
novo and database search approaches, depends on a good
scoring function to model prediction quality. Currently used
scoring functions range from rather simple peak intensity-
based scoring to statistical models including Bayesian
networks. The latter show a better performance, but require
retraining for different spectrometer types and, thus depend
on reliable annotated data sets. Our flexible scoring scheme
allows for user controlled training on supplied annotated
data sets. The topology of the network can either be defined
by the user or, following the approach proposed by Datta
and Bern [22], learned from the given data set directly. We
extend this approach by considering ion intensities and
cleavage positions similar to the PepNovo scoring in order
to account for shifts of the fragmentation patterns between
different m=z regions along the spectrum.

Our software ANTILOPE (ANTIsymmetric path search
with Lagrangian Optimization for PEptide identification),
an implementation of the improved approach, is freely
available as part of upcoming releases of the open source
proteomics library OpenMS [23].

The structure of the remainder of this paper is as follows.
Section 2 describes our new method. In Section 3, we
compare our tool with the state-of-the-art tools PepNovo,
NovoHMM, LutefiskXP, PILOT, and PEAKS. Finally, in
Section 4, we discuss our results and future work.

2 NOVEL de novo PEPTIDE SEQUENCING

ALGORITHM

This section describes our new approach to the de novo
sequencing problem. At first, we formally introduce the
graph-theoretic formulation and the resulting ILP formula-
tion our method ANTILOPE is based on. Then, we present
our new algorithmic approach to find the k best solutions of
the ILP. Finally, we explain the scoring model of ANTILOPE.

2.1 Graph-Theoretical Formulation

Bartels introduced the transformation of a tandem mass
spectrum into the so-called spectrum graph, a now com-
monly used data structure in graph-theoretical approaches
to the de novo sequencing problem [6], [9], [16], see Fig. 1.
Using this data structure, the original problem amounts to
finding a longest path with certain properties in this graph.

When a peptide P is fragmented by collision induced
dissociation (CID), it usually breaks along the backbone
between two neighboring amino acids into a pair of N-
terminal (prefix) and C-terminal (suffix) fragments. We
define the residual mass of P as the sum of the mono-
isotopic masses of all amino acid residues in P . By parent
mass MP , we denote the total mass of P , which is the
residual mass, plus 18 Da for an additional water molecule.
Depending on the exact fragmentation position, different
types of fragment ions are produced that have a certain
mass offset compared to the prefix residue mass (PRM) or
suffix residue mass. Besides the types presented in Fig. 2,
also neutral loss variants, e.g., loss of water or ammonia, of
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Fig. 1. Spectrum graph generation. (a) Simplified tandem mass spectrum of the peptide VEALR. Rounded m/z values in Da are presented on top of
each peak. (b) The corresponding spectrum graph with two nodes being generated for each peak. One under the assumption of being a b-ion, the
other under the assumption of being a y-ion. It is obvious that the path starting at node s with mass 0 and ending at node t with mass 568 encodes
the correct peptide sequence. The undirected edges connecting complementary nodes are drawn as dashed lines.

Fig. 2. Peptide fragmentation along the backbone. This figure displays
the most prominent fragmentation positions for the generation of pairs of
b/y-ion, a/x-ion, and c/z-ion in the backbone of a peptide.



several ion types are observed frequently as well as
multiply charged ions. The fragmentation process is still
not fully understood and which types are generated with
which intensity depends on many factors.

The spectrum graph G, consists of a set of nodes V , a
set of directed edges ED, and a set of undirected edges EU .
In the original definition the spectrum graph does not
contain the set of undirected edges, which is a slight
modification by Liu et al. [16] who termed this the extended
spectrum graph. In the spectrum graph, each node corre-
sponds to some possible prefix residue mass of the peptide
to be identified. Directed edges represent amino acids and
connect nodes, if their mass difference can be explained by
some amino acid. Two nodes that lead to contradicting
interpretations of some mass peak are called complemen-
tary and are connected by an undirected edge.

Given the tandem mass spectrum of some unknown
peptide the construction of the spectrum graph is as
follows: each peak s with mass ms in the input spectrum
generates a set of nodes. If we consider k different N-
terminal ion types (e.g., b-ion and a-ion) with mass offsets
�1; . . . ; �kðþ1 Da for b-ions, �27 Da for a-ions) from the
PRM, then peak s generates k nodes with masses
ms � �1; . . . ;ms � �k. For C-terminal ion-types with offsets
�1; . . . ; �k, additional k nodes with masses Mp � 18� ðms �
�1Þ; . . . ;Mp � 18� ðms � �kÞ are generated. Each of these
nodes represents the prefix residue mass under the
assumption that s was generated by an ion of a certain
type. Clearly at most one of these nodes can represent the
true PRM, therefore, they are all contradicting each other
and are connected by undirected edges. Whenever the mass
difference of two nodes vi and vk equals the mass of some
amino acid �ð��Þ, we connect vi and vk via a directed edge
ðvi; vkÞ labeled with �. Finally, we add two so-called goalpost
nodes s and t, with masses 0 and PM � 18 Da, respectively.

If the spectrum of some peptide P is complete, i.e.,
fragment ion peaks are abundant for each possible cleavage
site of P , then there exists a node for each PRM of P .
Therefore, the correct sequence of P is obtained by finding
the s-t path of nodes corresponding to the true prefix
sequences of P and by concatenation of the edge labels
along this path. Each node in the spectrum graph has a
score that represents the reliability of that node to
correspond to a true PRM.

However, simply looking for the longest path in the graph
often leads to infeasible solutions, namely, if two nodes that
were generated by the same peak are included in the path,
since in general only one of them corresponds to a true PRM.
This problem is aggravated when the score of each node is
directly related to the intensity of the generating peak. In
such a scenario, a high-intensity peak generates several high
scoring nodes and a longest path search then tends to
include a pair of complementary nodes in the longest path
leading to a contradicting N- and C-terminal interpretation
of the same peak. Such an infeasible path is called symmetric
because the pairs of forbidden pairs of N-terminal and C-
terminal nodes form a symmetric structure, which can be
seen in Fig. 1. To solve the de novo sequencing problem, we,
hence, have to search for antisymmetric paths. These are
paths without contradicting nodes. They, therefore, do not
contain pairs of nodes that are connected by an undirected
edge. See Fig. 3 for an example.

Most de novo sequencing algorithms generate one pair of
complementary nodes for each peak assuming it being
either a b-ion or y-ion. These pairs form a nested non-
interleaving structure allowing for efficient computation.
But, although b- and y-ions are usually the most abundant in
CID spectra, there are cases in which both of them are
missing and, therefore, no correct node is generated in this
case. Therefore, it is promising to include nodes for other
interpretations, especially in the low and high mass range of
the spectrum, where fragmentation is usually less complete.

While the longest antisymmetric path problem is NP-
complete for general directed graphs [13], there exist
polynomial algorithms for the special case, where the
noninterleaving property is satisfied. The polynomial
algorithm proposed by Chen et al. [14] uses dynamic
programming to compute an optimal solution to the longest
antisymmetric path with noninterleaving forbidden pairs.
In a second paper, Lu and Chen [15] extended this approach
to compute suboptimal solutions by constructing a so-called
matrix spectrum graph and applying depth-first search and
a backtracking algorithm. In contrast, the ILP formulation
presented in the next section does not depend on such a
nested structure and corresponds to the de novo sequencing
problem for any desired set of ion types.

2.2 Integer Linear Programming Formulation

Our algorithm is based on the following ILP formulation
[24], which is very similar to the one Floudas and DiMaggio
used for their tool PILOT [11]. Our formulation models the
problem by means of zero-one variables for each edge. We
put the score of each node on all its outgoing directed
edges. As the graph is acyclic, this is a safe transformation

max
X

ðvi;vkÞ2ED
ci;kxi;k; ð1Þ

X
ðvs;vkÞ2ED

xs;k ¼ 1; ð2Þ

X
ðvk;vtÞ2ED

xk;t ¼ 1; ð3Þ

X
ðvi;vkÞ2ED

xi;k �
X

ðvk;vjÞ2ED
xk;j ¼ 0 8k 2 V n fvs; vtg; ð4Þ

X
vi2e

X
ðvi;vkÞ2ED

xi;k � 1 8e 2 EU; ð5Þ

xi;k 2 f0; 1g: ð6Þ
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Fig. 3. Symmetric path example. This figure sketches schematically the
situation when an infeasible symmetric path would be preferred over a
feasible antisymmetric solution. Assuming that the small nodes have a
score of 1 and the bold nodes have a score of 2, the illegal s-t path
scores higher than the legal one. Therefore, in this example, a simple
longest path search yields infeasible solutions.



We introduce a binary variable xi;k for every directed edge
ðvi; vkÞ 2 ED, which has value one if edge ðvi; vkÞ is part of
the path (active) and zero otherwise (inactive). The objective
function (1) maximizes the summed score of all active
directed edges. For the two goalposts s and t, the two
constraints (2) and (3) assure that exactly one active edge
leaves s and one enters t. Together with the flow
conservation constraints (4), they establish a correspon-
dence between feasible solutions of the ILP and s-t paths in
the graph. An optimal solution of the ILP consisting of
objective function (1) and constraints (2), (3), and (4)
corresponds to a longest s-t path, still possibly symmetric
and therefore infeasible for the de novo sequencing problem.
Therefore, we add another constraint (5) that makes sure
that for each pair of contradicting nodes at most one will be
selected. The difference of our model to the one proposed
by Floudas and DiMaggio is twofold. First, we do not
introduce variables for nodes as they are not required. This
does not change the general structure of the formulation
and has no strong effect on the time required for solving.
Second, we do not formulate a constraint that prevents the
exact mass of the predicted sequence to deviate from the
measured parent mass by more than a certain threshold
value (usually 2:5 Da). We argue that in our algorithm it is
more promising to defer this filtering to a later stage of the
algorithm. Since, we add edges that correspond to pairs and
triples of amino acids which often represent several
possible combinations of amino acids, there is no exact
mass which could be used in such a constraint. Therefore,
we perform the filtering at a later stage when we have
created the candidate superset.

2.3 Applying Lagrangian Relaxation

While linear programming (LP) problems can be solved in
polynomial worst case time, adding integrality constraints
makes them generally NP-hard and the resulting integer
linear programs (ILPs) require different algorithmic solu-
tion approaches. One common method is to first solve the
LP relaxation and then investigate the obtained solution. If
the solution is fractional, one has to resort to techniques like
branch-and-bound or branch-and-cut using upper and
lower bounds obtained from heuristics and from the
relaxed solution.

We apply a different kind of relaxation method,
Lagrangian relaxation, which yields in many cases much
more efficient algorithms than those based on LP relaxa-
tions because it can exploit structural knowledge of the
problem. Lagrangian relaxation is motivated by the experi-
ence that many hard integer programming problems
correspond to a significantly easier problem that has been
complicated by an additional set of constraints. To obtain
the efficiently computable Lagrangian problem, the com-
plicating constraints are removed and replaced by a penalty
term in the objective function. The relaxed problem
obtained that way is called the Lagrangian problem and
can often be solved efficiently.

The Lagrangian relaxation of the de novo sequencing ILP
(1)-(6) is straightforward as it is very obvious that the
antisymmetry constraints form the class of hard constraints
that complicate the computationally easy problem of a longest
path search in a directed acyclic graph (DAG). We can solve

this relaxed problem by means of a simple standard
algorithm, which can be found in reference material [25].

We apply Lagrangian relaxation by dropping the anti-
symmetry constraint (5) and moving it to the objective
function to penalize its violation. This leads to the Lagran-
gian problem

Zð�Þ ¼ max
X

ðvi;vkÞ2ED
xi;k ci;k �

X
e2EU ; vi2e

�e

 !
þ
X
e2EU

�e

X
ðvs;vkÞ2ED

xs;k ¼ 1

X
ðvk;vtÞ2ED

xk;t ¼ 1

X
ðvi;vkÞ2ED

xi;k �
X

ðvk;vjÞ2ED
xk;j ¼ 0 8k 2 V n fvs; vtg

xi;k 2 f0; 1g:
ð7Þ

The vector � holds the Lagrangian multipliers, nonnega-
tive real numbers that define the weight of the penalty term.

Lemma 1. The Lagrangian problem (7) can be solved in linear

time and space.

Proof. Solving the Lagrangian problem consist of the
following steps: first, we simply subtract from each edge
weight ci;k the value �e, for all undirected edges e incident
to node vi. Then, we apply the linear time OðjV j þ jEDjÞ
longest path search algorithm for DAGs on the graph
with the modified edge weights. Finally, we add the
value of

P
e2EU �e to the score obtained from the longest

path search algorithm. Obviously, each of the steps
requires only linear time and space. tu

By restricting the Lagrangian multipliers to nonnegative
values one can easily show that the value of the solution of
the Lagrangian problem is an upper bound to the optimal
value of the original problem [26]. In order to obtain a tight
bound, the strategy is to find the values for the Lagrangian
multipliers that minimize Zð�Þ, which means solving the
dual problem

ZD ¼ min
��0

Zð�Þ:

We apply the efficient iterative subgradient optimization
algorithm, computing sequences of multipliers �t, where
t ¼ 0; 1; 2; . . . denotes the iteration. We start with �0

e ¼ 0, for
all e 2 EU and in each iteration t we compute the
subgradients Ste ¼ 1�

P
vi2e
P
ðvi;vkÞ2ED xi;k, for all e 2 EU

and update the Lagrangian multipliers according to formula

�tþ1
e ¼ max

�
0; �te � �tSte

�
: ð8Þ

One crucial factor with a huge influence on the performance
is the step-size �. The subgradient method converges to the
optimal solution ZD, if the step-size satisfies the following
conditions [27]:

lim
k!1

�k ¼ 0 and lim
k!1

Xk
i¼1

�i ¼ 1:
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A formula that is widely used for step-size computation
because it shows good performance in practice is given by

�t ¼ �
tðZð�tÞ � Z�ÞP

e2EU ðSteÞ
2
; ð9Þ

where Z� is the value of the best solution to the original
problem that was computed yet and �t defines a decreasing
adaption parameter.

2.4 Suboptimal Solutions

A straightforward strategy to compute suboptimal solu-
tions, also implemented in PILOT [11], is to cut off previous
solutions by an additional constraint. A known drawback of
this approach is that solving time may increase dramatically
after generating a few suboptimal solutions. We suggest a
different strategy and overcome this problem by means of
an algorithm which, for a given number k, directly
computes the k longest paths. We use the algorithm by
Yen [28] that was originally designed to compute the k

shortest paths without cycles on general directed graphs.
Yen’s algorithm is a deviation algorithm based on the

fact that the ith shortest path Pi, will coincide with every
shorter path Pi�1 . . .P1 up to some node until it deviates.
The farthest node from the source s with this property is
called deviation node dðPiÞ.

The strategy to find the iþ 1st shortest s-t path Piþ1 is,
starting at dðPiÞ, to compute for each node vij of Pi the
shortest path to t, that deviates from Pi at node vij. Therefore,
a shortest path from vij to t is computed which is not allowed
to use the edge ðvij; vijþ1Þ. This shortest path from vij to t is
then concatenated with the prefix ðvi1 . . . vij�1Þ of Pi to obtain
the shortest s-t path that deviates from Pi at node vij. This
path is added to a candidate set X. After the shortest
deviating paths of Pi have been computed, the shortest path
in the candidate set X corresponds to the iþ 1st shortest s-t
path Piþ1 and is removed from X.

Yen’s algorithm performs an additional trick to guaran-
tee for paths without cycles that we do not discuss here. For
a more detailed description of this algorithm and variants
please refer to reference material [28], [29].

Our problem differs in a few points from the original
problem solved by Yen’s algorithm, so it requires a few
adaptations. While Yen’s algorithm is designed for general
directed graphs that may contain cycles, we are working on
a DAG. This simplifies the problem as we do not have to
worry about cycles and can simply transform the shortest
path problem into a longest path problem. Note that the
longest path problem is NP-complete in graphs with cycles.
A second difference is that we have the additional
condition to find antisymmetric paths. Therefore, every
time the shortest path algorithm is called in the Yen’s
algorithm, we replace this by solving the Lagrangian
relaxation formulation for the longest antisymmetric path
search. The following theorem and its proof capture the
main algorithmic result of this paper.

Theorem 1. The combination of our Lagrangian relaxation-based
algorithm for antisymmetric paths and a modification of Yen’s
algorithm solves the problem of computing the k longest
antisymmetric paths in time OðklsðjEj þ jV jÞÞ, where l is the

length of the longest path and s is the total number of

subgradient iterations.

Proof. In iteration iþ 1 of Yen’s algorithm the computed
path deviating from Pi at node vij must satisfy two
conditions in order to form an antisymmetric path in G.

1. There are no two nodes in the path from vij to t
that are in conflict.

2. None of the nodes in the computed path from vij
to t is in conflict with some node from the prefix
of path Pi up to node vij.

The first condition is satisfied by the Lagrangian
relaxation formulation itself, because if applied to the
subgraph vij . . . t, every feasible solution corresponds to
an antisymmetric path from node vij to t. To meet the
second condition, it is sufficient to remove all nodes from
the subgraph vij . . . t that are connected via an undirected
edge with some node of the prefix s . . . vij of Pi before we
compute the longest antisymmetric path. This trick also
simplifies the longest antisymmetric path search for
increasing j as the possibilities to generate an infeasible
solution are decreasing.

The complexity of Yen’s algorithm for computing the
k-longest paths in a DAG is OðkjV jðjEj þ jV jÞÞ. The first
factor jV j comes from the fact that, in a general graph,
one path can possibly contain all jV j nodes. In the case of
peptide sequencing, the length of a path equals the
length of the predicted peptide which usually does not
exceed a length of 30 for typical experimental settings. In
the longest antisymmetric path version using Lagrangian
relaxation, the OðjEj þ jV jÞ DAG longest path algorithm
gets iteratively called during subgradient optimization
algorithm. Therefore, the complexity of our formulation
for identification of a peptide containing l amino acids is
OðklsðjEj þ jV jÞÞ with s being the number of iterations
during subgradient optimization. tu

Note that the value of s is possibly exponential if the
subgradient optimization does not converge and the
complete branch and bound tree has to be enumerated.
Nevertheless, in the results section, we will show that for
our peptide sequencing formulation, on average, only very
few iterations are required which leads to a practically
efficient algorithm.

2.5 Scoring Model

We use a probabilistic scoring based on a Bayesian network
similar to the scoring model of PepNovo. Bayesian net-
works are directed acyclic graphs, where nodes represent
random variables and the edges represent conditional
dependencies between variables. The variables in our
model are the ion types t 2 T that are considered by our
scoring model and the possible values for each variable is
the intensity. Therefore, as a first step, we normalize the
intensity of all peaks to discrete values as defined by Dan�cı́k
et al. [9] by using their rank as intensity.

The usage of Bayesian networks for scoring nodes in the
spectrum graph is motivated by the observation that
fragmentation events are not independent. For example,
the probability of observing a strong b-ion is not independent
of the abundance and intensity of the complementary y-ion.
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Unlike for the PepNovo algorithm, where the structure
of the probabilistic network is predefined leading to a fixed
set of accounted conditional dependencies, we implemen-
ted a flexible scoring scheme where the network topology
can be either defined by the user or it can be learned during
the training process automatically.

For inference and training of the Bayesian network, we
used the Bayesian Network Classifiers in the machine
learning suite Weka [30]. Similar to PepNovo, we discretize
the relative position of a cleavage into several (default 3)
equally sized regions r to account for the different intensity
distributions in the center and terminal regions usually
observed in CID spectra. For each of the regions, we train a
Bayesian network using some training set of tandem mass
spectra with known peptide identification. For each training
spectrum, we construct the node set of the spectrum graph
and select an equal number of true positives (vertices
representing a true PRM) and false positives (vertices not
representing a PRM). For each of the selected nodes, we
look for witnessing peaks at their calculated positions and
record their normalized intensity to obtain the training
vectors for the Bayesian network. Each of the training
vectors has one additional entry, the class label, which is T
for true positives and F for false positives. We select only
those ion types of the witness set for the network training
that appear in at least t percent of the true positive samples
of the training set, where the threshold parameter t can be
defined by the user. For each of these selected types, we
then add a node in the Bayesian network. One additional
node for the class is added. During the network training,
the structure (set of directed edges) of the network is
learned and once the structure is fixed the conditional
probability tables are learned from the training data. While
the user can control a huge range of possible options for the
Weka Bayesian network classifier training through our
program, we set as the default training algorithm the K2-
HillClimber and the Bayesian metric for local scoring [31].
For a user defined network topology the first step is
skipped and only the conditional probability tables are
computed.

Once the network is trained, we score a node v in the
spectrum graph by looking for peaks in the spectrum at the
calculated masses for the selected ion types to obtain the set
of intensity observations Iv. Using the trained Bayesian
network BN, we then compute the log likelihood ratio as

LLRðvÞ ¼ log
PrðIv j BN; class ¼ T Þ
PrðIv j BN; class ¼ F Þ ; ð10Þ

where PrðIv j BN; class ¼ X 2 fT; FgÞ is the probability of
observation Iv under model BN when the class variable is
set to X. In contrast to Bern and Datta who obtain their false
positive samples from perturbation of the correct PRM, we
only take false positive PRM for which a node was created
during the spectrum graph construction. We chose that
approach, since we want the Bayesian network to dis-
criminate between correct and false nodes in the spectrum
graph. By just perturbing the true PRM one will very likely
generate false positive training samples containing only
zero intensity entries, which will never be the case for a
node in the spectrum graph as it requires at least one peak
to be generated.

Additional to the Bayesian network, we also use a simple
intensity rank score SRðvÞ as it is also used by INSPECT [1].
This score is the ratio between two probabilities, the
probability that a peak with a certain intensity rank
corresponds to a certain ion type (e.g., a b-ion) and the
the probability that a randomly chosen peak was generated
by that ion type. As these values differ between different
mass regions of a spectrum, we split the spectrum into three
equally spaced mass regions and estimate the probabilities
for each of them separately using the same training data as
for the Bayesian network. For example, if we generate a
node for a peak of rank 4, and this node interprets the peak
as a b-ion, then SRðvÞ is the log ratio between the probability
that a rank 4 peak is a b-ion and the probability that any
random peak is a b-ion.

The final score sðvÞ for each node v of the spectrum
graph is then computed as

sðvÞ ¼ LLRðvÞ þ SRðvÞ: ð11Þ

Nodes having negative scores correspond to unreliable
PRMs and are removed from the graph in order to
reduce the size of the spectrum graph and speed up the
candidate generation process. Since our formulation is
working with edge weights, we move the node scores
onto the edges, such that each directed edge gets the
score of its left node. In the filtered spectrum graph, we
compute the predefined number of suboptimal solutions,
each corresponding to one antisymmetric path. To
account for missed cleavages, we also add edges
corresponding to pairs and triples of amino acids to the
spectrum graph. For each of the generated candidates, in
a second step, we try to resolve the pairs and triples of
amino acids. Therefore, we generate all possible combina-
tions and permutations of amino acids to generate a
candidate superset. The candidates in that superset are
then rescored by a refined version of a shared peaks
count, where we reward abundant witness peaks and
penalize missing ones.

Given a candidate sequence we look for witnessing
peaks in the query spectrum and give a bonus if one was
found or a penalty if it is missing. Further, we check
whether the peak is a primary isotopic peak, a secondary
isotopic peak or a lone peak. A peak is called a primary
isotopic peak if we find a child peak at offset 1 Da for a
singly charged ion or 0.5 Da for a doubly charged ion.
Equivalently, a peak is called a secondary isotopic peak if it
has a parent peak with offset �1 Da for a singly charged ion
or �0:5 Da for a doubly charged ion. If a peak is neither
primary isotopic nor secondary isotopic then it is a lone
peak. If a witnessing peak is a primary peak, we add
another bonus to the score while we charge a penalty if it is
a secondary peak. While the reward and penalty score are
actually user parameters, we will offer a generic algorithm
to estimate reasonable values in future versions. The
candidates are then reranked according to this score and
the predefined number of candidates is returned.

3 RESULTS

In this section, we present and discuss our computational
results. We compared ANTILOPE with state-of-the-art
alternative peptide identification software with respect to
running time and quality.
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3.1 Efficiency

The major contribution of this work is the new algorithmic
approach based on Lagrangian relaxation. We will first give
a thorough analysis of the performance and compare it to
the ILP formulation (1)-(6). Like implemented in PILOT, we
generate the suboptimal solutions by introducing addi-
tional constraints that cut off previous solutions. We
implemented our algorithm in C++ and use the OpenMS
[23] library that offers convenient data structures and
algorithms to handle and manipulate spectral data. For the
ILP formulation, we use the commercial CPLEX [32] solver
software (version 9.0), which is in general the fastest solver
available. We were not able to directly compare to PILOT
because the software is not available upon request. In Fig. 4,
we compare the running times of the ILP and our
Lagrangian relaxation formulation on a set of 100 tandem
mass spectra from the ISB data set [33]. In this comparison,
we only consider the time required to generate the set of
candidate sequences and ignore the preprocessing of the
spectrum, the spectrum graph generation, and rescoring as
these steps are independent of the applied algorithm. We
compared the running time required to generate the top
scoring 20, 30, and 50 candidates for each spectrum. The
figure shows that our approach significantly outperforms
the ILP formulation on all instances and the performance
gain increases with the number of candidates to be
generated. Our algorithm is, on average, �9 times faster
for the best 20 candidates, for 30 and 50 candidates the
average advantage increases to a factor of �12 and �18.
While the runtime for of the ILP formulation for the top 50
candidates was usually above 2 seconds, the Lagrangian
relaxation formulation requires, on average, only a few
tenths of a second.

In a closer analysis, we investigated the convergence
behavior of our Lagrangian relaxation formulation. It reveals
that for each Lagrange problem solved during the path
ranking algorithm only very few iterations of the subgradient
optimization are required. The path ranking algorithm
maintains a list of previously detected candidate paths
together with their scores. Since the score Zð�Þ of the
Lagrange problem is an upper bound to the score ZIP of the
best possible feasible solution, subgradient optimization can
be aborted as soon as Zð�Þ falls below the lowest score in the
candidate list. If the Lagrangian relaxation does not converge
and cannot be aborted after 100 iterations, we apply a
branching step. We use the best infeasible path found during
the subgradient optimization and arbitrarily choose one node
vb involved in a conflict. Then, we generate two subproblems,
one forcing vb to be in the path and one forbidding vb to be
selected. We found that only for a very small fraction of the
Lagrange problems a branching step had to be performed,
and the depth of branch-and-bound trees never exceeded a
value of 3. It is necessary to mention that the performance
strongly depends on the scoring function used, since a good
scoring function will not generate many high scoring nodes
for the same peak and only the correct one should receive a
significantly high score. Therefore, a good scoring function
does not only affect the identification performance, but also
affects the complexity of the candidate generation.

3.2 Sequencing Performance

We compared the performance of ANTILOPE to four
noncommercial de novo sequencing tools, LutefiskXP, No-
voHMM, PILOT,1 PepNovo, and the commercial software
PEAKS.2 We used two measures, accuracy and recall, to
assess their performance. Accuracy denotes the fraction of
correctly predicted amino acid residues compared to all
predicted residues. Recall is the fraction of correctly
predicted residues compared to the total number of residues
of the correct peptide sequences. When looking at suboptimal
solutions for each algorithm, we looked for the prediction
with the highest recall and reported the values of this
prediction for recall and precision. In case of multiple
predictions with the same recall value, we report the values
for the one with the highest precision among them. As
benchmark set, we chose tandem mass spectra from the ISB
data set [33] that were generated by an ESI-ion trap mass
spectrometer by Thermo Finnigan and spectra from the open
proteomics database. This set of reliably annotated spectra
from tryptic peptides has already been used for training of
PepNovo and NovoHMM. We created a training set of 1214
spectra from doubly charged precursor ions of unique
peptides to train the scoring model. During the Bayesian
network training for each of the 3 mass sectors, only the ion
types that had a peak in at least 20 percent of the true positive
training samples are selected for the corresponding Bayesian
network. The topologies of the Bayesian networks together
with a brief discussion can be found in the supplementary
material which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2011.59. The parameters to score the peptide spectrum
matches for the candidate sequences in the superset were
chosen as follows: for an abundant b- or y-ion, we awarded
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Fig. 4. Running time comparison between Lagrangian relaxation and ILP
formulation for computation of 20, 30, and 50 suboptimal solutions of
100 benchmark spectra. Box-and-whisker plots display median,
quartiles, and extrema of the distribution of relative performance gains
rpg ¼ runtimeðILPÞ=runtimeðLagrangeÞ. ANTILOPE outperforms the
CPLEX-based method for all spectra and all numbers of suboptimal
solutions. The advantage increases with the number of suboptimal
solutions. The considered spectrum graphs contained between 80 and
200 nodes.

1. As PILOT was not available, the identifications for the test data were
generated by the authors of PILOT.

2. We used the PEAKS Online 2.0 web interface.



the score PSMb ¼ PSMy ¼ 1, doubly charged b- or y-ions
scored 0.5, a-ions 0.3 and all neutral losses were awarded a
score of 0.2. Isotopic peaks for some type t were awarded a
score of PSMt � 0:2. If some peak was missing the penalty of
PSMt � 0:5 was subtracted from the score. When a peak was
classified as a secondary peak its score is reduced to
PSMt � 0:8. The score for some peak is then weighted with
the relative m=z distance between the expected and the
observed m=z value using a linear function.

The test set consists of 200 spectra of peptides (peptides in
training and test data set disjunct) with a molecular mass of at
most 1;600 Da and an average peptide length of 10 residues.
We score a predicted amino acid as correct, if its predicted
starting mass position does not deviate by more than 2:5 Da
from the correct starting mass position. Further, in our
evaluation, we do not discriminate between the amino acids
Q/K and I/L since their masses cannot be distinguished.

To compare the tools, we do not only look at the top hit,
but, we also look at the accuracy and recall for the best hit in
the top 3, 5, and 10 candidates. The results are presented in
Fig. 5. Since NovoHMM only generates one candidate per
spectrum it appears only in the first plot. Looking only at the
top hit, the recall of ANTILOPE ð�73:4%Þ is only marginally
lower than of PEAKS ð�73:7%Þ, but slightly better than that
of PILOT ð�71:5%Þ, NovoHMM ð�70:2%Þ, and PepNovo
ð�69:4%Þ. The recall of LutefiskXP ð�60:6%Þ is much lower
than for all other tools. Since ANTILOPE and NovoHMM
both compute complete sequences, they have almost equal
values for accuracy and recall, while for LutefiskXP and
PepNovo these values differ as they allow for gaps in their
predicted sequences. If we go over from the top hit to the
best 3, 5, and 10 candidates, we observe that in terms of
recall, ANTILOPE is always very close to PepNovo and
PEAKS (equal for the top 3, 2.5 percent advantage of
PepNovo and PEAKS for the top 10) and always approxi-
mately 4 percent better than PILOT. In terms of accuracy,
PepNovo ð�92%Þ has a better performance than ANTILOPE,
PEAKS, and PILOT since it allows for partial peptide
predictions. The accuracy of LutefiskXP is slightly better

than for ANTILOPE and PILOT, but this accuracy is achieved
at a much lower recall which is between 12 and 14 percent
lower in all four cases. The four tools ANTILOPE, Lute-
fiskXP, NovoHMM, and PepNovo are comparable in terms
of runtime which is usually between 0.5 and 1.5 seconds per
spectrum. The running time of PILOT as reported by the
authors was, on average, around 9 seconds per spectrum.
We cannot directly estimate the runtime of PEAKS since the
identification is performed via a web interface.

4 CONCLUSION

We proposed a new algorithmic approach to solve the
longest antisymmetric path problem by means of Lagran-
gian relaxation, combined with a polynomial algorithm for
suboptimal solutions. Using this approach, the algorithm is
flexible and not restricted to the nested structure of the
spectrum graph and solves this problem much faster than
an LP relaxation-based method for the same formulation.
Therefore, for our tool ANTILOPE, the candidate generation
is no longer the bottleneck as the most time consuming step
is the reranking phase since the number of possible
candidates can easily explode if several double and triple
amino acid edges are selected. In terms of sequencing
performance, ANTILOPE is already competitive to available
state-of-the-art programs PepNovo and PEAKS while it
outperforms LutefiskXP and NovoHMM especially if we
also consider suboptimal solutions. For long peptides
PepNovo still has a small advantage, which is mostly due
to the fact that the current version of ANTILOPE produces
only complete annotations without gaps.

Actually, we only generated two nodes for each peak, one
for a b- and one for a y-ion. Generating nodes for all ion types
decreased the performance as this always lead to some high
scoring, but false nodes and, thus to wrong interpretations.
Nevertheless, we are sure that generating more nodes can
lead to better identifications in combination with a refined
scoring scheme. The algorithmic framework is flexible
enough to work with mass spectra generated by different
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Fig. 5. Benchmark. Comparison of accuracy and recall of ANTILOPE with NovoHMM, PepNovo, PILOT, PEAKS, and LutefiskXP. We compare the
accuracy and recall of the best prediction among the top 1, 3, 5, and 10 ranked candidates returned by each tool. As the best prediction, we consider
the one with the best recall among the candidates. Since NovoHMM generates only one candidate per spectrum, it appears only in the first plot.
Discussion in text.



kind of mass spectrometers. So, the user can define for which
ion types a node shall be generated. This can lead to
improved identification performance for different data sets.
Combined with a scoring function trained on a representa-
tive set of spectra, the ability of our algorithm to directly
model multiply charged ions can lead to an improvement
over the other algorithms when analyzing tandem mass
spectra obtained from higher charged precursor ions.

For the future, we plan to improve our algorithm in several
directions. We will include support for identification of
peptides containing posttranslational modifications. Further,
we want to support combinations of complementary frag-
mentation techniques like CID together with electron transfer
dissociation (ETD) or CID with electron capture dissociation
(ECD), which can improve the identification [22], [34]. In
these applications, the flexibility of our formulation may
become a major advantage over existing programs.

To improve the performance for spectra of longer
peptides, we will extend ANTILOPE in a way that it can
produce partial predictions allowing for gaps at the
terminals. This, together with a machine learning strategy
for the rescoring like the rank-boosting algorithm used by
PepNovo, should lead to a further improvement. ANTILOPE

is freely available as part upcoming releases of the open
source proteomics library OpenMS [23] allowing for
convenient integration into experimental workflows.
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