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ABSTRACT

Motivation: Assembling peptides identified from tandem mass spec-

tra into a list of proteins, referred to as protein inference, is an import-

ant issue in shotgun proteomics. The objective of protein inference is

to find a subset of proteins that are truly present in the sample.

Although many methods have been proposed for protein inference,

several issues such as peptide degeneracy still remain unsolved.

Results: In this article, we present a linear programming model for

protein inference. In this model, we use a transformation of the joint

probability that each peptide/protein pair is present in the sample as the

variable. Then, both the peptide probability and protein probability can

be expressed as a formula in terms of the linear combination of these

variables. Based on this simple fact, the protein inference problem is

formulated as an optimization problem: minimize the number of pro-

teins with non-zero probabilities under the constraint that the difference

between the calculated peptide probability and the peptide probability

generated from peptide identification algorithms should be less than

some threshold. This model addresses the peptide degeneracy issue

by forcing some joint probability variables involving degenerate pep-

tides to be zero in a rigorous manner. The corresponding inference al-

gorithm is named as ProteinLP. We test the performance of ProteinLP

on six datasets. Experimental results show that our method is competi-

tive with the state-of-the-art protein inference algorithms.

Availability: The source code of our algorithm is available at: https://

sourceforge.net/projects/prolp/.

Contact: zyhe@dlut.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics Online.
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1 INTRODUCTION

Protein identification using tandem mass spectrometry (MS/MS)

is the most widely used tool for detecting proteins from biolo-

gical samples. In a typical shotgun proteomics experiment

(Fig. 1), proteins in a sample are first digested into peptides,

and the resulting mixture of peptides is subjected to mass spec-

trometry to generate tandem mass spectra. After spectra acqui-

sition, the peptide that generates each spectrum is identified with

peptide identification algorithms. From these putative peptide

identifications, the proteins that are present in the sample are

detected with protein inference algorithms.

Computationally, the input for the protein inference problem

is a bipartite graph: the left is a set of identified peptides and the

right is the set of candidate proteins that have at least one con-

stituent peptide. The inference problem considered here is to find

a subset of proteins that are truly present in the sample.

However, such protein inference problem is only partially

solved since several technical challenges still remain uncon-

quered. One of the most challenging problems is the peptide

degeneracy issue, which arises when a single peptide can be

mapped to multiple proteins. The performance of protein infer-

ence algorithms mainly depends on our capability of assigning

these degenerate/shared peptides to proteins that really generate

them.
To date, there are already many protein inference algorithms

available in the literature (Bern and Goldberg, 2008; Feng et al.,

2007; Gerster et al., 2010; Grobei et al., 2009; He et al., 2011;

Kearney et al., 2008; Li et al., 2009a, b, 2010; Lu et al., 2008; Ma

et al., 2009; Moore et al., 2002; Nesvizhskii et al., 2003; Price

et al., 2007; Qeli and Ahrens, 2010; Ramakrishnan et al., 2009a,

b; Sadygov et al., 2004; Searle, 2010; Serang et al., 2010; Shen

et al., 2008; Slotta et al., 2010; Spivak et al., 2012; Tabb et al.,

2002; Weatherly et al., 2005; Yang et al., 2004; Zhang et al.,

2007). The reader can refer to a recent survey (Huang et al.,

2012) for details. Here, we shall discuss briefly how these meth-

ods tackle the peptide degeneracy issue and present our research

motivation.

Existing protein inference algorithms solve the peptide degen-

eracy problem in quite different ways. Generally, they fall into

two categories, as listed in the subsequent sections.
Inference algorithms in the first category solve the peptide

degeneracy problem with some simple rules or assumptions in

an implicit manner. One typical example is the widely used

two-peptide rule, which regards all candidate proteins that

have at least two matching peptides as true positives (TPs).

The underlying assumption is that degenerate peptides should

belong to all proteins that they can match. In contrast,

IDPicker (Ma et al., 2009; Zhang et al., 2007) formulates the

protein inference problem as a set covering problem and solves

it with a greedy algorithm. In the greedy selection procedure,

proteins that can match the maximal number of uncovered pep-

tides are selected in an iterative manner. The underlying assump-

tion is that each degenerate peptide should be assigned to one

protein only.

Inference algorithms in the second category treat the peptide

degeneracy issue explicitly in terms of conditional probability.

Briefly, they either model the conditional probability of one pro-

tein being present given a peptide or model the conditional*To whom correspondence should be addressed.
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probability of one peptide being present given a protein.

ProteinProphet (Nesvizhskii et al., 2003), one of the most

widely used protein inference methods, learns ‘degenerate pep-

tide weight’ using an EM-like algorithm. In fact, such degenerate

peptide weight corresponds to the probability of one protein

being present conditional on the presence of a given peptide.

Alternatively, MSBayesPro (Li et al., 2009b) utilizes the concept

of peptide detectability, which is defined as the probability of

detecting a peptide in a standard sample by a standard prote-

omics routine if its parent protein is expressed. Fido (Serang

et al., 2010) models the probability with which a sample peptide

is generated from a protein containing it with a constant prob-

ability. HSM (Shen et al., 2008) considers five types of mechan-

isms that a peptide can be generated by a protein, i.e. the

conditional probability that one peptide is present has five pos-

sible values.
The attempts of treating the peptide degeneracy problem

rigorously in the second category have obtained promising re-

sults; however, they still have some limitations.
First, ProteinProphet employs an EM-like iterative procedure

to estimate protein probabilities. This method is described pro-

cedurally rather than derived from a well-defined optimization

model. In contrast, MSBayesPro, HSM and Fido derive their

models from clear, explicitly stated statistical assumptions.

However, they formulate the protein inference problem as a com-

binatorial optimization problem. This means that they may gen-

erate different inference results from the same dataset when

obtaining the optimal solution is too time-consuming.
Second, Fido and HSM use a very small set of parameters to

approximate all possible values that the conditional probability

can take. Such a simplification makes it possible to create effi-

cient accompanying algorithms, but it may also limit the capabil-

ity of achieving better inference performance. In contrast, there

are no such limitations in ProteinProphet and MSBayesPro.

Unfortunately, the conditional probabilities in ProteinProphet

are calculated using a formula that has not been rigorously jus-

tified. The peptide detectability values in MSBayesPro are pre-

dicted using a complex model trained on other datasets.
Finally, existing methods involve many parameters that are

not easy to specify. For example, Fido needs to have a grid

search in order to find good values for its three parameters.
The aforementioned observations motivate our research. In

this article, we take a step further toward completely solving

the protein inference problem with particular emphasis on pep-

tide degeneracy. To that end, we present a linear programming

(LP) model for protein inference, which is built on two simple

probability equations.
We first introduce the joint probability that both a protein and

its constituent peptide are present in the sample. To obtain a

linear model, we use a mathematical transformation of this

joint probability as the variable. The marginal probability of a

peptide being present can be expressed as a formula in terms of

the linear combination of these variables. If we assume that the

marginal probability of each identified peptide being present is

known, the protein inference problem could be formulated as the

following optimization problem: ‘minimize the number of pro-

teins of non-zero probabilities while the calculated peptide prob-

ability should be as close to its known value as possible’. We

show that this optimization problem actually can be written as a

LP problem, which has only one parameter that is easy to specify

and has a clear interpretation. This new protein inference algo-

rithm is named as ProteinLP. Experimental results on six data-

sets show that our ProteinLP algorithm is a competitive and

complementary approach for protein inference.

The main contributions of the work described in this article

can be summarized as follows:

� To our knowledge, our work is the first LP formulation for

the protein inference problem. Our method guarantees to

find the optimal solution.

� Instead of using conditional probability, our model is the

first attempt of addressing the peptide degeneracy problem

with the joint probability. It greatly simplifies the model

without sacrificing the discrimination power.

The rest of this article is organized as follows. In Section 2, we

describe our method in detail. Section 3 presents the experimen-

tal results and Section 4 concludes the article.

2 METHODS

Given m candidate proteins and n identified peptides, the protein infer-

ence problem can be formulated as an optimization problem: select a

possibly small subset of candidate proteins that best ‘explains’ these pep-

tides. Such an optimization problem can be formulated in quite different

ways. In this section, we present a LP model for protein inference, which

can be solved very quickly with standard LP solver.

We use a vector of indicator variables ðx1, . . . ,xj, . . . , xmÞ to denote

the set of m candidate proteins and another indicator vector

ðy1, . . . , yi, . . . , ynÞ to denote the set of n identified peptides. In addition,

we assume that we know the probability that each peptide is present in

the sample, which is provided by peptide identification algorithms such as

Mascot (Perkins et al., 1999) or post-processing tools such as

PeptideProphet (Keller et al., 2002). The peptide probability vector is

Fig. 1. Protein identification using mass spectrometry in shotgun prote-

omics. In the experimental process (from left to right), proteins are di-

gested into peptides, which are then subjected to mass spectrometry to

produce MS/MS spectra. In the data analysis process (from right to left),

there are two major computational problems: peptide identification and

protein inference. This article focuses on developing effective algorithms

for protein inference
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denoted by ðz1, . . . , zi, . . . , znÞ. Notation and definitions used in this art-

icle are summarized in Table 1.

2.1 Model

Let Prðyi ¼ 1Þ denote the probability that peptide i is present and

Prðxj ¼ 1Þ denote the probability that protein j is present in the sample.

A peptide is present if at least one of its parent proteins is present:

Prðyi ¼ 1Þ ¼ 1�
Ym
j¼1

1� Pr yi ¼ 1, xj ¼ 1
� �� �

, ð1Þ

where Prðyi ¼ 1,xj ¼ 1Þ denotes the joint probability that peptide i and

protein j are both present in the sample.

Similarly, for each protein j, we have

Prðxj ¼ 1Þ ¼ 1�
Yn
i¼1

1� Pr yi ¼ 1,xj ¼ 1
� �� �

: ð2Þ

Through the logarithmic transformation, we convert the product relation

in Equations (1) and (2) into the sum relation so as to build a LP model:

ln 1� Prðyi ¼ 1Þ½ � ¼
Xm
j¼1

ln 1� Pr yi ¼ 1,xj ¼ 1
� �� �

ð3Þ

and

ln 1� Prðxj ¼ 1Þ
� �

¼
Xn
i¼1

ln 1� Pr yi ¼ 1,xj ¼ 1
� �� �

: ð4Þ

Since the peptide probability and protein probability are not linear with

respect to the joint probability, we use pij ¼ ln 1� Pr yi ¼ 1, xj ¼ 1
� �� �

instead of Prðyi ¼ 1,xj ¼ 1Þ as the variable of our model. Then, both

the peptide probability and protein probability can be expressed as a

function of the linear combination of these variables. In other words,

we can use the sum of pij to calculate both peptide probability and protein

probability.

From aforementioned analysis, we can see that the joint probability of

peptide and protein can serve as the bridge between peptide probability

and protein probability. On the one hand, we can use the joint probability

to explain the known peptide probability. On the other hand, we can

calculate the unknown protein probability and tackle peptide degeneracy

issue through joint probability. Therefore, the protein inference problem

is equivalent to finding an optimal joint probability matrix, calculated

from the matrix P ¼ ðpijÞ.

Based on aforementioned observations, we present a LP formulation

for the protein inference problem:

max
P

Xm
j¼1

tj ð5Þ

8j : tj � 0 ð6Þ

8i, j : pij � tj ð7Þ

8i : lnð1� zi � �Þ �
Xm
j¼1

pij ð8Þ

8i : lnð1� zi þ �Þ �
Xm
j¼1

pij ð9Þ

8i, j : pij �
� 0 if j 2 NeðiÞ
¼ 0 else

,

�
ð10Þ

where Ne(i) is the set of all proteins that can generate peptide i.

In Figure 2, we provide a vivid illustration on the main idea of this LP

model. Some further remarks on the model and constrains are listed

below.

� The constraints (8) and (9) control the difference between the

observed and calculated peptide probabilities. Here, we regard zi
as the observed peptide probability and Prðyi ¼ 1Þ as the calculated

value where
Pm

j¼1 pij ¼ ln 1� Prðyi ¼ 1Þ½ �. In constraints (8) and (9),

� 2 ½0, 1� is the only parameter of our model, which is the difference

between the observed and calculated peptide probability. This par-

ameter reflects our confidence on peptide identifications. For

instance, � ¼ 0 means that we believe the input peptide probability

is perfectly accurate so that we have to adjust the variable pij to make

the equation hold. Hence, this parameter has a clear interpretation

and it can be specified with ease. In our implementation, we use

� ¼ 0 as the default setting.

� The constraint (7) is to find the minimum value in pj (the jth col-

umn of matrix P). Since only a subset of candidate proteins are

truly present in the sample, some protein probability values

should be zero. In order to achieve this goal, we control the max-

imum joint probability assigned to each protein. Since lnð1� xÞ

is a monotonic decreasing function, the maximum joint prob-

ability Prðyi ¼ 1,xj ¼ 1Þ corresponds to the minimum value

ln 1� Pr yi ¼ 1, xj ¼ 1
� �� �

in pj. Then we maximize it in the objective

function (5) so as to shrink some protein probabilities to 0.

� The observed peptide probability zi can be equal to one. This will

cause a problem in our implementation since lnð1� xÞ is minus in-

finity when x¼ 1. To address this problem, we reset the observed

peptide probability to 0.99999 when zi ¼ 1.

� pij � 0 and tj is the minimum value in pj so that tj should be not

more than zero, as specified in constraint (6).

� For notation convenience, we use n�m variables in the LP formu-

lation described earlier in the text. In fact, the actual number of

variables is less than n�m since the peptide–protein bipartite

graph is very sparse. As shown in constraint (10), we set all pij ¼ 0

if peptide i is not contained in protein j and consider only the re-

maining joint probabilities as variables. This greatly improves the

running efficiency of our method. Constraint (10) also ensures that

Prðyi ¼ 1, xj ¼ 1Þ falls into [0,1] since it is a probability value.

Table 1. Notations and definitions

Notations Definitions

ð1, . . . , i, . . . , nÞ All n peptides identified by peptide identification algorithms

ð1, . . . , j, . . . ,mÞ All m proteins that might have generated these n peptides

ðy1, . . . , yi, . . . , ynÞ Peptide vector: indicator variables of peptides’ presences if peptide i is present, yi ¼ 1; otherwise yi ¼ 0

ðx1, . . . ,xj, . . . , xmÞ Protein vector: indicator variables of proteins’ presences

ðz1, . . . , zi, . . . , znÞ The probabilities of peptides’ presences estimated by peptide identification algorithms or PeptideProphet
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� In the model, we group the proteins with the same set of identified

peptides together and regard each group as a single entity.

� Our LP model is quite flexible and can be extended easily. For in-

stance, we currently assign a global deviation threshold � to all pep-

tides. In fact, we can also use an individual deviation threshold �i for

each peptide i. This will provide us the possibility of assigning larger

deviation thresholds to certain peptides that are suspected to be

error-prone.

After obtaining the solution matrix P, the protein probability is calcu-

lated as:

Prðxj ¼ 1Þ ¼ 1�
Yn
i¼1

epij : ð11Þ

3 EXPERIMENTS

3.1 Data

We use six datasets in our experiments. All the datasets are pub-

licly available. Among these six datasets, 18 mixtures (Klimek

et al., 2008), Sigma49 and yeast (Ramakrishnan et al., 2009a)

have a corresponding protein reference set as the set of

ground-truth proteins. An identified protein is labeled as a true

identification if it is present in the protein reference set. Another

three datasets are DME (Brunner et al., 2007), HumanMD

(Ramakrishnan et al., 2009b) and HumanEKC (Ramakrishnan

et al., 2009a), which have no reference sets and we use the

target-decoy strategy for performance evaluation. In this

target-decoy strategy, the MS/MS spectra are searched against

a mixed protein database containing all target protein sequences

and an equal number of decoy sequences. Then, we consider an

identified protein as a true identification if it comes from the

target protein database. The detailed information about the six

datasets can be found in the supplementary Tables S1 and S2.

3.2 Database search

The search engine used in our experiment is X!Tandem

(v2010.10.01.1) (David and Cottrell, 2004). For 18 mixtures,

Sigma49 and yeast datasets, all MS/MS data are searched against

their own protein sequence databases. For DME, HumanMD
and HumanEKC, the spectra need to search against both target

and decoy protein databases.
During the database search, we use default search parameters

wherever possible, assuming that parameters have already been
optimized. Some important parameter values are listed in the

following: fragment monoisotopic mass error¼ 0.4Da; parent

monoisotopic mass error¼ 100ppm; minimum peaks¼ 15 and
minimum fragment m/z¼ 150.

Peptide probabilities are computed using PeptideProphet
included in Trans-Proteomic Pipeline (TPP) v4.5. Any peptide

identifications with probability50.05 are excluded in the input.

For any peptide sequence that is matched by multiple spectra
with different scores, we choose the highest identification score.

3.3 Protein inference

We compare our method with ProteinProphet (Nesvizhskii et al.,

2003), MSBayesPro (Li et al., 2009b) and Fido (Serang et al.,

2010). All these three algorithms treat the peptide degeneracy
issue explicitly in terms of conditional probability, and their soft-

ware packages are publicly available. For the proteins that
cannot be distinguished with respect to identified peptides,

ProteinProphet, Fido and ProteinLP put all of them into the

same group. Whenever we refer to the number of TPs or false
positives (FPs) identified at a threshold or use these values in a

calculation, all proteins in the group are reported and the group

probability is used as their protein probabilities. Alternatively,
we can select one representative from each protein group in the

performance comparison for these three algorithms (please check

the supplementary Section 1 for details).

3.3.1 ProteinProphet We run ProteinProphet included in the

TPP (v4.5) software with the default parameter values.

3.3.2 MSBayesPro We first obtain the predicted peptide

detectabilities from http://darwin.informatics.indiana.edu/appli-
cations/PeptideDetectabilityPredictor/. This website currently

only predicts scores of tryptic peptides. For those non-tryptic

peptide identifications, we assign detectability scores to them
by ourselves. The principle is peptide detectability¼median (pre-

dicted detectability scores from the same parent protein)/3. Then,
we run MSBayesPro for the first time with the peptide probabil-

ity file and peptide detectability file as input to estimate the pro-

tein priors. Finally, we run MSBayesPro for the second time to
obtain the protein probabilities using priors from the first run as

additional input. The probability of each protein is reported ac-

cording to the value of Positive_Probability_by_memorizing no
matter what MAP_state_by_Memorizing value is.

3.3.3 Fido We run Fido with its default parameter setting.

3.3.4 ProteinLP We use Glpk for Java (v4.47) as the LP
solver and set � ¼ 0 in the experiment for ProteinLP.

3.4 Results

We evaluate the performance of different methods by creating a
curve, which plots the number of TPs as a function of q-value. An

identified protein is labeled as a TP if it is present in the corres-

ponding protein reference set or target protein sequence database

Fig. 2. P ¼ ðpijÞ is a n�m matrix, where pij is equal to

ln 1� Prðyi ¼ 1, xj ¼ 1Þ
� �

, and Prðyi ¼ 1, xj ¼ 1Þ is the joint probability

that peptide i and protein j are both present in the sample. In the model,

the linear program has two kinds of constraints: column constraints and

row constraints. The row constraints require that for each peptide i, the

difference between the observed peptide probability and the calculated

peptide probability should be no greater than a threshold �. The column

constraints can shrink some protein probabilities to 0
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and as a FP otherwise. Given a certain probability threshold t,

suppose there are Tt TPs and Ft FPs, the false discovery rate

(FDR) is estimated as FDRt ¼ Ft=ðFt þ TtÞ. The corresponding

q-value is defined as the minimal FDR that a protein is reported:

qt ¼ mint0�t FDRt0 . The curve is produced by varying the prob-

ability threshold t. The probabilities of top-scoring proteins in the

several methods are all equal to one, and the order of these pro-

teins in the output file is random. Thus, we skip these proteins

with same probabilities and start from the one with a different

score when calculating the q-value.

Figure 3 plots the number of TPs identified by four methods at

different q-values. Some important observations are summarized

as follows.
First, none of these four methods can always achieve the best

performance over all datasets. Throughout six datasets, our

method is stable and never performs the worst. Globally,

Fig. 3. Identification performance comparison among ProteinLP (PLP), Fido, ProteinProphet (PP) and MSBayesPro (MSB). Because people are

particularly interested in the performance of different algorithms when the q-value or FDR is very small, we only plot the curve up to 0.05 along

the x-axis for yeast, DME and HumanMD datasets. Fido has a minimum non-zero q-value of 0.08 on yeast dataset, which is40.05. To plot the curve of

Fido within the slot of [0,0.05], we use the maximal number of TPs achieved at q-value¼ 0.08 as the value of y-axis at q-value¼ 0.05. Note that such an

operation overestimates the actual performance of Fido on the yeast data. Since the maximum q-value for HumanEKC is50.04, we choose 0.03 as the

maximal value of x-axis. We cannot set the q-value range very small for 18 mixtures and Sigma49 datasets since the probabilities of top-scoring proteins

in the several algorithms are all equal to one, hence we have to ship these proteins with same probabilities and then calculate the q-value of the first

appearing protein with a different probability
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ProteinLP is approximately (or tied with other algorithms) the
best inference algorithm on four datasets (yeast, DME,
HumanMD and HumanEKC) and the second best on 18 mix-

ture data. Locally, it beats ProteinProphet five times, outper-
forms both MSBayesPro and Fido four times.
Second, ProteinLP has the largest number of TPs among the

highest ranking proteins when q-value¼ 0 (i.e. 0 FPs) on three
datasets: DME, HumanMD and HumanEKC. Other three algo-

rithms can also achieve such a property on some datasets. The
number of these datasets is 1, 0 and 2 for ProteinProphet,
MSBayesPro and Fido, respectively.

Finally, the experimental results from simple 18 mixture to
complex human data show the trend that ProteinLP is more
powerful on processing the MS data generated from real samples.

To compare the capability of different methods in tackling the
peptide degeneracy issue, we present the identification results of
four methods when inferring proteins containing a high-scoring

degenerate peptide in Table 2. For each dataset, we count the
number of TPs and FPs identified by ProteinProphet,

MSBayesPro, Fido and ProteinLP with the same number of re-
ported proteins. Then, we divide the identified proteins into two
classes: ‘degenerate proteins’, which contain a high-scoring de-

generate peptide and ‘simple proteins’ which do not contain any
such degenerate peptide. From Table 2, we have the following

observations.
First, ProteinProphet and ProteinLP can identify more degen-

erate proteins than MSBayesPro and Fido in most cases. This is

because both ProteinProphet and ProteinLP tend to assign a
degenerate peptide to the parent protein with more identified
peptides. As a result, some degenerate proteins will have much

higher probability than other proteins. In contrast, MSBayesPro
and Fido do not have such a tendency. When we let different

methods report the same number of proteins, ProteinProphet
and ProteinLP will return more degenerate proteins since these
proteins are ranked more front by these two methods.

Second, MSBayesPro can always report the least number of
FP degenerate proteins on 18 mixtures, Sigma49 and yeast at the

cost of identifying less TP degenerate proteins. All four methods

report zero FP degenerate proteins on HumanMD and

HumanEKC datasets.
Third, ProteinLP is able to identify more TP degenerate pro-

teins than the other three methods on DME, HumanMD and

HumanEKC datasets. Our method never reports the most FP

degenerate proteins. Moreover, ProteinLP identifies the least

number of FP degenerate proteins on DME dataset.
Overall, MSBayesPro is more powerful in controlling the false

discovery rate with respect to degenerate proteins, whereas our

method offers a reasonable trade-off between TP and FP rates.
Using the same set of identified proteins in Table 2, we also

plot two groups of Venn diagrams to further check the overlap

and difference among (degenerate) proteins identified by differ-

ent inference algorithms in supplementary Figures S3 and S4.

These figures show that the set of proteins identified from the

same dataset by different methods can vary significantly.

Moreover, ProteinLP can always report some additional (degen-

erate) proteins that have never been identified by the other three

methods on all datasets except Sigma49. This fact further con-

firms that ProteinLP can serve as a strong and complementary

approach for protein inference.
ProteinLP requires only one parameter: �. We choose � ¼ 0 as

the default setting. To test the effect of this parameter, we run

ProteinLP over a rough grid of � that ranges from 0 to 0.9. We

omit parameter value of 1.0 since all the protein probabilities are

zero under this parameter setting. We use the number of TPs at

certain q-value threshold as the performance metric to assess the

effect of different parameters. We choose 0.3 as the q-value

threshold for 18 mixtures and Sigma49 and 0.01 for all the

other four datasets, respectively. As shown in Figure 4, the per-

formance of our method is sensitive to different parameter spe-

cifications, and � ¼ 0 is not the best choice. To address the

parameter selection problem, we develop an entropy-based ap-

proach for setting a proper value automatically (see supplemen-

tary Section 2 for details).

Table 2. Accuracy on proteins containing degenerate peptides

PP MSB Fido PLP PP MSB Fido PLP

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

18 mixtures Sigma49

Simple proteins 17 8 17 11 17 9 17 9 27 1 32 6 30 5 30 1

Degenerate proteins 1 5 0 3 1 4 0 5 5 10 4 1 5 3 5 7

Yeast DME

Simple proteins 366 4 469 7 373 2 398 4 38 0 145 18 129 11 33 0

Degenerate proteins 164 4 62 0 106 57 132 4 136 1 11 1 34 1 142 0

HumanMD HumanEKC

Simple proteins 70 0 119 1 111 6 64 0 147 0 184 0 180 0 143 0

Degenerate proteins 54 0 4 0 7 0 60 0 49 0 12 0 16 0 53 0

For the six datasets, we count the number of true positives and false positives identified by ProteinProphet (PP), MSBayesPro (MSB) and Fido and ProteinLP (PLP) among

their top- k ranked proteins, where k is 31, 43, 538, 175, 124 and 196 for 18 mixtures, Sigma49, yeast, DME, HumanMD and HumanEKC datasets, respectively. The value of

k is determined according to the number of proteins with probability of 1.0 reported by ProteinProphet. We divide the identified proteins into two classes: ‘degenerate proteins’

are proteins that share a high-scoring (� 0:90) peptide with another protein and ‘simple proteins’ do not share such a peptide with any other protein.
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4 CONCLUSION

To solve the peptide degeneracy problem, we need to know

which protein really generates the degenerate/shared peptide.
The most natural idea is to model or infer the conditional prob-
ability of one peptide (protein) being present given a protein

(peptide). However, we may still need the protein probability
as the variable in the mathematical formulation besides the con-
ditional probability. This will lead to a hard optimization prob-

lem that cannot be optimally solved. In fact, the joint probability
that both a protein and its constituent peptide are present in the
sample can also provide similar discrimination information for
assigning a degenerate peptide to the right protein. Therefore, the

main advantage of ProteinLP over other methods is the use of
joint probability as the variable, which avoids modeling the pro-
tein probability and the conditional probability simultaneously

so that the optimization formulation is greatly simplified.
In the future work, we plan to incorporate some supplemen-

tary information such as protein–protein interactions into the LP

model to help solving the degeneracy issue. For example, if we
know that there is an interaction between two proteins, then
it can be expected that the existence of one protein may lead
to the presence of another protein. To utilize such interaction

information, we can introduce a linear constraint on the prob-
ability difference between two interacting proteins to enforce
their coexistence.
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