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Overview

* Quantification using mass spectrometry
* Basic terms from analytical chemistry
e Quantitative behavior of mass spectrometers

* Experimental quantification
* Absolute and relative quantification
e Label-free vs. labeled techniques
* Selected experimental techniques

 Computational problems
* Map Alignment




Analytical Chemistry

e “Analytical chemistry is the study of the separation,
identification, and quantification of the chemical
components of natural and artificial materials.”

* “Quantification [...] is the act of counting and measuring
that maps human sense observations and experiences
into members of some set of numbers.”

* Quantitative Mass Spectrometry :=

use of a mass spectrometer to turn amounts of stuff into
numbers
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Some Terms

* Analyte — the stuff we want to analyze

* Matrix — the components of the sample that are not
analytes

* The matrix can significantly impact the way the whole
analysis is performed

 Example:
* Proteomics analysis from urine

* Urine contains
* Proteins and peptides — the analyte
* Water
* Metabolites
* Urea

- matrix




Matrix Effects in LC-MS

 Components of the matrix are being separated
just like the analytes

 Parts of the matrix can be ionized as well and
then also show up as signals in the MS

* A priori it is unknown, which part of the signal
stems from matrix or analytes
* Matrix can interfere with the analysis by

 Competing with analytes for ionization -> reduce the
number of analyte molecules ionized

e Adsorb, precipitate or even react with the analyte



Quantifying Analytes

Analytes have to be in solution for proteomics and
metabolomics

We thus deal with concentrations: amounts per volume
of sample V

Molar concentration

c.=n; [V [SI unit: mol/m3]
Mass concentration

p,.=m;/V [SI unit: kg/m?3]
Translating molar concentrations into mass

concentrations can be done via the molecular weight M,
of the analyte

p;=¢ M,

/



Precision and Accuracy
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e Accuracy: closeness to the true value (mostly influenced by
systematic error) — repetition of the experiment will not improve

the result

Precision: repeatability of the measurement (mostly influenced by

random error) — repetition of the experiment will yield more a

value closer to the true value

* An ideal experiment combines high accuracy with high precision



Measurement Errors
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e Each measurement is associated with an error

* There are two basic types of error:

 Random error: defines the variance of repeated measurements (e.g., due to
high noise level) — this is always present in every measurement

e Systematic error (bias): shifts the mean of repeated experiments (e.g., due
to an incorrect calibration)



Calibration Curve
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 Measurement of the detector response for various (known) concentrations
allows the construction of a calibration curve

* Most detector responses are chosen in a way that the response changes linearly
with the concentration

* Once the calibration curve has been measured, it allows the determination of
the concentration of an unknown sample



Response

saturation
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 LOD: |level of detection — at what concentration can we decide that the analyte is present
* LOQ: level of guantification — at what concentration can we accurately quantify it
e LOL: limit of linearity — saturation effects start here

e Linear range (dynamic range): the concentration range where we get a response that is
linear in the concentration



Detection Limit

LOD LOQ

* Limit of detection (detection limit) -- LOD: the lowest analyte concentration that
can be distinguished from the absence of the analyte (blank) within a stated
confidence limit (generally 99% confidence)

e Limit of quantification — LOQ: the concentration at which we can distinguish
two values with reasonable confidence

* Both depend on the noise level, the matrix, the instrument, the sensitivity for a
specific analyte, etc.

[accessed 15.11.2011, 14:00 CET



LOD/LOQ

“Suppose you are at an airport with lots of noise from jets taking off. If the person
next to you speaks softly, you will probably not hear them. Their voice is less than
the LOD. If they speak a bit louder, you may hear them but it is not possible to be
certain of what they are saying and there is still a good chance you may not hear
them. Their voice is >LOD but <LOQ. If they speak even louder, then you can
understand them and take action on what they are saying and there is little chance
you will not hear them. Their voice is then >LOD and >LOQ. Likewise, their voice may
stay at the same loudness, but the noise from jets may be reduced allowing their
voice to become >LOD. Detection limits are dependent on both the signal intensity
(voice) and the noise (jet noise).”

[accessed 12.11.2011, 10:20 CET




Quantitative Mass Spectrometry
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* lonization: number of ionized analyte molecules proportional to
the total amount present

 MS detector: proportional to the number of ions (the ion current)

* (Caveats:
e Saturation: there is an upper limit to the response
* Noise: does the signal really come from the analyte?



Quantitative LC-MS

* Fixed volume of the sample is injected

* Total amount of analyte eluting from the column is the same
amount as the amount injected (normally, nothing gets ‘lost’ on
the column)

* Analyte spreads out, elutes over a certain timespan from the
column: maximum concentrations at the end of the column
depend on retention time (peak broadening)

* Total amount remains constant, independent of peak spreading!
(no analyte can be lost)

* Only a fraction of the analyte really enters the MS (skimmer!)

* J|onization efficiency differs between analytes



Quantitative LC-MS

 MS signalis proportional to concentration at the end of the
column

* Area under the (chromatographic) peak is proportional to the total
amount of analyte eluting and thus to the amount in the sample
e Elution profiles are (roughly) Gaussians

* Strategy

* Integrate over the MS signal (intensity /(t)) caused by the analyte i over the
total elution time of an analyte (centered around RT, peak width defined by

standard deviation of the Gaussian o))
* Area under the peak is proportional to analyte concentration

* Response factor f; is unknown
ci(t) = g(Rt;, o;, t) ¢,
I(t) = f; c(t) =f; <% a(Rt;, o;, t)
[1(t) = £, &,
]



Detection, Identification, Quantification

>
>

* Proteomics
* More peptides/proteins are
usually identified than quantified
* |dentification: MS/MS,
guantification usually by MS ->
independent processes

Proteins
in sample

Number of proteins

Proteins
identified

Proteins
quantified

>

Protein concentration

* Many things can be seen
(detected) but cannot be
identified or quantified

LOD
LOI
LOQ

* Metabolomics
* |dentification here is particularly
difficult
* We can identify only a fraction of
what we can quantify

LOI: “Level of identification”

Bantscheff et al., Anal Bioanal Chem (2005), 389, 1017-1031.



Quantitative Data — MS Spectra

* Different ionized species in the same MS spectrum result
in different peaks

e Example:

e Each peptide leads to a distinct set of peaks (isotope patterns!)

* |ntensity of each peak is proportional to the concentration at
the time of elution
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Quantitative Data — MS Spectra

* Comparing intensities of different analytes in the same spectrum
is not possible because they have different response factors!

* Exception: peptides/metabolites that differ only by a stable
isotope label will have identical response factors — their intensities
can be compared within the same spectrum! This is the basis for
SILAC analysis.
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Intensity

Quantitative Data — MS? Spectra

* Fragment spectra can be used for quantification as well

* Under identical fragmentation conditions, the fragment ion intensity is
proportional to the parent ion concentration/intensity

* Key methods: MRM, iTRAQ
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Peak Width in Chromatography

_wa—)
e Peaks broaden with retention time
e Early peaks are sharp and narrow
" q be b q diffusion
Later peaks tend to be broader —

* Diffusion along the column
during the separation

* Analytes eluting later had more

time to diffuse
* Peak area remains constant, though
* No analyte is getting lost

* Increased width is compensated
by reduced height




Peak Width in Chromatography
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Model of Theoretical Plates

* Column is split into separate sections
(‘plates’)

* Mobile phase (dark) moves forward with
each iteration

* Analytes distribute between mobile
phase and stationary phase (here:
equally)

 Mobile phase moves again, equilibrates,
etc.

* Numbers express the concentration in
each plate

* This simple model yields a Gaussian
shape for an infinite number of plates

* Note that the sum over all plates always
remains the same (no analyte is lost)
until it starts eluting from the column



Chromatograms

* Except for quantification techniques where a direct comparison is
made within the same spectrum (iTRAQ, SILAC), elution profiles
have to be considered

* Accurate quantification requires accurate integration over the
retention time profile

* Since the peak area remains the same, this means the
qguantification will be independent of changes in the peak shape
and width

* Elution profiles are often assumed to be Gaussian, but in reality
they can deviate significantly (tailing/heading leads to asymmetric
peak shapes — in the model of theoretical plates, this corresponds
to incomplete equilibration.




Quantification Strategies

~ Quantitative Proteomics

~ Relative Quantification ~ Absolute Quantification

AQUA  QConCAT  SISCAPA

Labeled ~ Label-Free
: : Spectral Feature-
In vivo In vitro Counting  MRM ' " Baged
- TAN/BN SILAC  iTRAQ = ICAT  160/%0Q

After: Lau et al., Proteomics, 2007, 7, 2787




Labeling Techniques

Many labeling techniques exploit stable isotope labeling

* Different isotopes of the same element behave chemically basically
identically (often used: /2H, 12/13C, 14/15N 16/18(Q))

* Their masses differ, however, so the MS can distinguish them

Introducing a label in one sample and a different (or no label) in
another, mixing allows a relative quantification between two (or

more) samples

Advantages

 Both samples are treated identically, systematic errors affect them in the
same way

* (Can be easily annotated manually (e.g., look for pairs of peaks)

Disadvantages
* Labels can be expensive, difficult, unreliable to introduce

e Labeling in vivo is not always possible, not all techniques support in vitro
labeling



Labeling Techniques

* Chemical labeling
* Peptides are modified chemically after extraction

* Labelis usually attached covalently at specific functional groups (N-
terminus, specific side chains, ...)

* Does not involve a perturbation of the in vivo system
* Labeling occurs late (during sample preparation) and thus does not account
for variance introduced in the early steps
 Metabolic labeling

» Stable isotope labels are integrated by ‘feeding’ the organism with labeled
metabolites (amino acids, nitrogen sources, glucose, ...)

* Full incorporation of the label can take a while

* Requires perturbation of the in vivo system, depending on the size quite
expensive

* Labeling occurs early in the study, results in higher reproducibility



SILAC

* SILAC — Stable Isotope Labeling with

Amino Acids in Cell Culture

* Introduce stable labels by feeding labeled amino acids to the cell culture

* Labels will be integrated into all proteins after a reasonable amount of time

* Mix and compare with an unlabeled sample

* Tryptic digest ensures that each peptide contains at most one lysine!

* Peptides with heavy and light label are otherwise identical and coelute

* Spectra contain isotope patterns for both heavy and light peptides
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g
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SILAC
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SILAC
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==
Media with _—" _Media with
"light" AA (e) "heavy" AA (%)
= =
Q © , el e
5 &  BegnSILAC @ §
= adaptation phase =
m/z \ \ m/z
= =
21 e (— Subculture cells, ! g *
£ as needed 2|1
m/z \ \ m/z
= Culture desired =
c|e anumber of dishes, ee e x
= B allowing five =
m/z doublings m/z
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SILAC

Control Perturbed
State A (light o) State B (heavy %)

\ Mix cells/lysate /
1:1

Optional protein or peptide fractionation
analyze sample with mass spectrometry

A
o : Intensity of MS signals between
[ light and heavy peptides give
g © relative protein abundance
= between cell states A and B
>

m/z

Ong, Mann, Nat Prot 1 (2007), 2650-2660.




SILAC
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Spike-In SILAC
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Spike-In SILAC
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Geiger et al., Nat Prot 6 (2011), 147-157.




SILAC Mouse
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Isobaric Labeling
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Isobaric Labeling

 |dea

* Label the different samples with labels of the same mass
(isobaric)

* Design the label in a way that they fragment differently upon
collision-induced dissociation

* MS? spectra will then contain reporter ions

e Quantification and identification are then both based on
tandem spectra only

 Key method: iTRAQ - isobaric tags for relative and
absolute quantification

* Based on covalent modification of N-terminus of peptides

* Labeling performed after digestion (also applicable to clinical
samples)

 Kits available for 4 or 8 distinct labels (‘quadroplex’, ‘octoplex’)



ITRAQ
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Quantitative Data — LC-MS Maps

* Spectra are acquired with rates up to dozens per second
e Stacking the spectra yields maps
* Resolution:

* Up to millions of points per spectrum

* Tens of thousands of spectra per LC run
 Huge 2D datasets of up to hundreds of GB per sample
 MS intensity follows the chromatographic concentration
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LC-MS Data (Map)

Quantification
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(15 nmol/pl, 3x over-expressed, ...



Quantification Strategies

Metabolic labeling Chemical labeling Spiked peptides Label free
Cells or tissue ﬂ I n I
Purification or ; ; : 5 ¢
fractionation ; 5 5
Protein
Peptides [ {
MS data [ [ _ _
Data analysis [ ‘ [

Common quantitative mass spectrometry workflows. Boxes in blue and yellow represent two experimental conditions. Horizontal lines indicate when
samples are combined. Dashed lines indicate points at which experimental variation and thus quantification errors can occur.

Bantscheff et al., Anal Bioanal Chem (2005), 389, 1017-1031.



Label-Free Quantification (LFQ)

* Label-free quantification is probably the most
natural way of quantifying

* No labeling required, removing further sources of
error, no restriction on sample generation, cheap

* Data on different samples acquired in different
measurements — higher reproducibility needed

* Manual analysis difficult

e Scales very well with the number of samples, basically
no limit, no difference in the analysis between 2 or
100 samples




LFQ — Analysis Strategy

1. Find features in all maps . - -




LFQ — Analysis Strategy

1. Find features in all maps

2. Align maps
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LFQ — Analysis Strategy
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LFQ — Analysis Strategy
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LFQ — Analysis Strategy
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Feature-Based Alighment

* LC-MS maps can contain millions of peaks

* Retention time of peptides and metabolites can shift between

experiments

* In label-free quantification, maps thus need to be aligned in order
to identify corresponding features

* Alignment can be done on the raw maps (where it is usually called
‘dewarping’) or on already identified features

* The latter is simpler, as it does not require the alignment of
millions of peaks, but just of tens of thousands of features

* Disadvantage: it replies on an accurate feature finding




Feature-Based Alignment
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Feature Finding

* |dentify all peaks belonging to one peptide
* Key idea:

* |dentify suspicious regions

* Fit a model to that region and identify peaks explained by it




Feature Finding

* Extension: collect all data points close to the seed

* Refinement: remove peaks that are not consistent with the model
* Fit an optimal model for the reduced set of peaks

* |terate this until no further improvement can be achieved




Linear Alighment

* Lange et al. proposed an efficient feature-based
alignment of maps based on pose clustering

* The algorithm takes a pair of maps an computes an
optimal linear alignment

* It can be applied for multiple alignment of an arbitrary
amount of maps by applying it multiply and align the
maps in a star-like fashion onto one reference map (k-1
alignments for k maps)

* The algorithm relies on accurate feature detection but is
rather runtime efficient

Lange et al., Bioinformatics (2007), 23:i273-i281




Multiple Alignment

« Dewarp k maps onto a comparable coordinate system
« Choose one map (usually the one with the largest number of features)

as reference map (here:map 2 ->T, = 1)
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Pairwise Alignment
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Pairwise Alignment
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Matching of corresponding pairs
. —— will result in the
oo j".. _ b, correct transformation
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- These are more likely than

random matches!




Speeding Things Up

X O O
o
S . M
o) o
X 0) O
o O 5 O 5
o © o 9
X & o e o
@] (ON@) o 0O
o
by X o o o © o o)
s0L S © oS
................. N R Ry o 5 o o @ 5 o
X
X o © @) 8 © o o o
X 8 ° o © ©
X
P o O 5 O O
o © 00 @ @
>S o 0 0o
D T TP P T PP PRI T LTI er R aaaaEAnaacaaaaaaa O O 0O O
N ¥ o O o (@) o
S~ XX x © @) © (@)
X
5%00 15I00 00000 %00
—
rt

Only consider pairs (s;,s,) in S
with s, having a small distance
tos,in m/z.




Speeding Things Up
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Improve Matching

5, O

m/z
—_—
%

Normalize intensities in M and S:
weight the vote of each transformation

by the intensity similarities of the
point matches (s,,m,) and (s,,m,).




Linear Alighment

Preliminaries

° POdWOJSk' et al proposed an combine all n LC/MS runs

build overlapping mass-windows across combined runs

alternative linear alignment J. Cluster Analysis

for ecach mass-window do

methOd an d a |SO eXte N ded use p peak§ with highcist inl‘cnsilics .
] . ] calculate distance matrix of pairs of peaks (4, ~)
this to a nonlinear alignment Gttomass), i SO < kLA

B diff(log, o (intensity)) < ko

dj,h -

* The linear alignment is similar ” ORI

. ’ diff(log, o (intensity)) > ko
tot h eda Igo rit h m by La nge et hierarchical average linkage cluster analysis
cut cluster-tree at mass accuracy AN
a I . if ngy,, <thresholdi N nyjg < thresholds then
cluster is ‘well-behaved’
delete duplicated ‘well-behaved’ clusters
for cach ‘well-behaved’ cluster do
rt = median(rt)
for cach peak i do
dev; = rt; — 11

* It uses a different type of
cluster analysis to determine a
linear regression

2. Regression
for cach run s do

i I N CO nt ra St to t h e La N ge take only peaks from ‘well-behaved” clusters

fit regression line dev, ; = as + bs x ri;

algorithm, it generalizes nicely by minimizing 37 (dev; — dev, ;)2

Correction

to multiple map alignment for cach run s do
for each peak ¢ do
ricori = Tt; — dZ’Vs,i

Podwojski et al., Bioinformatics (2009), 25:758-764.



Nonlinear Alighment

* |dea
* Perform linear alignment (using pose clustering)
e Compute a more accurate local alignemnt using LOESS
regression

e LOESS regression (often also called LOWESS)

* Locally weighted polynomial regression
e Based on a pre-defined window size

e Points within this window contribute to the local
regression

* Perform local regression (linear or quadratic, cubic)
around the predicted coordinate



LOESS Regression

* Weighting is often performed by
tricubic weighting function !

w(z) — { (1 o |Z|‘3)r3 Zf|Z| <1

0 otherwise

* Weighting function is applied to 08
coordinates scaled into the chosen
window (-1 -z - 1)

04 -

03 |-

* Local regression (linear quadratic)

0.2 -

needs to be recomputed around o1 |
every point (computationally very 0
expensive)

-1 -0.5 0 0.5 1

tricubic function

Cleveland, J. Am. Stat. Soc (1979), 74:829-836




LOESS Regression

How Loess Works
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http://demonstrations.wolfram.com/HowLoessWorks



Nonlinear Alignment
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Alignment of two different datasets (top/bottom). Left: linear, right: nonlinear.
(around 30 k aligned peaks)

Podwojski et al., Bioinformatics (2009), 25:758-764.



Nonlinear Alighment
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Comparison of median RT error for linear/nonlinear regression

Podwojski et al., Bioinformatics (2009), 25:758-764.



Feature Linking

e Feature linking is performed
e across maps for label-free quantification

* within maps for arbitrary labeling strategies (e.g., SILAC: link
pairs 6 Da apart)

* Both problems can be solved with one tool, FeatureLinker

* A user-specified mass tolerance and retention time
tolerance are required as input

* Labeled feature linking also requires the specification of
the label distance (mass difference)

* The result are consensus features containing the original
features as well

* Correctness of linked features can also be verified through
identifications (if present)



OpenMS/TOPP

* OpenMS implements the Lange et al. algorithm

 TOPP contains tools for map alignment and for
feature linking

 MapAlignerPoseClustering

* Implements the pose clustering algorithm and computes the
corresponding transformation

e FeatureLinkerUnlabeledQT

* Uses QT clustering to compute the best assignment of
features across several maps

* Result is a consensus map




Consensus Features
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Consensus Features
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Quality Control

 MapStatistics
* Produces some descriptive statistics of a map for QC
* Did feature finding and map alignment work properly?

* Do all maps we aligned have roughly the same amount of features?

* Check instrument calibration and stability of chromatography
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Materials

* Quantification in general:
* Bantscheff et al., Quantitative mass spectrometry in proteomics: a critical
review, Anal Bioanal Chem (2005), 389, 1017-1031 [PMID: 17668192]
* Experimental methods

e SILAC: Ong, Mann, Nat Prot 1 (2007), 2650-2660.
* iTRAQ: Ross et al., Mol Cell Prot (2004), 3, 1154-1169.

* Pose clustering algorithm
* Lange etal., A geometric approach for the alignment of liquid-chromatography—
mass spectrometry data, Bioinformatics (2007), 23:i273-i281 [PMID: 17646306]
* Nonlinear alignment

* Podwojski et al., Retention time alignment algorithms for LC/MS data must consider
non-linear shifts, Bioinformatics (2009), 25 (6): 758-764. [PMID: 19176558]




