Structural biology

From sequence to structure

Proteins form into distinct shapes

Aims of structural biology

Predict the confirmation of a poly-peptide chain

Predict and analyze the function of a protein

Protein structures

- Elements of structure
 - The amino acids
 - Levels
 - Databases
 - Folds and families
- Prediction
- How to check for correct assignment
 - Ramachandran plot

Structures of biomolecules

- Primary structure
 - Amino acid sequence
- Secondary structure
 - Local elements
 - Helices
 - Sheets
- Tertiary structure (3D)
 - Fold
 - Classification
- Quarternary structure
 - Interactions between chains
 - Protein-protein interaction

AMINO ACIDS

Visualizing Proteins

- High complexity
- Multiple levels of structure
- Important properties are "distributed
- throughout the 3D structure

No single/simple "point" at which to look

Wireframe

Surface

2010-04-19

PDB/RCSB database

- Protein Data Bank One of the oldest databases on molecular biology
- Repository of all known structures
 - All published structures must be deposited
- Four-character identifier

Classification of protein structures

CATH database

- Fold
- Superfamily Secondary structure contacts
- Sequence families
- Domains
- Rule based on secondary structure content, contacts and domain boundaries

SCOP database

- Class
 - All α , all β
 - $-\alpha/\beta$ Parallel sheets
 - $-\alpha + \beta$ Antiparallel sheets
 - Multi-domain proteins
 - Membrane
 - Unstructured proteins
- Folds
- Superfamilies
- Families

FOLDS

PREDICTION OF PROTEIN STRUCTURES

Anfinsen's dogma (1961)

- Denatured proteins can refold in vitro
- No folding machinery required
- All information about the structure resides in the sequence
- Native structure: minimum free energy
 - Unique
 - Stable
 - Kinetically accessible

Levinthal's Paradox

- Consider a protein with 101 residues
 - 100 Ψ and 100φ angels
 - If we assume only three stable positions and none for ω
 - -3^{200} or 10^{95} confirmations
 - Sampling all confirmations exceeds the life time of the universe
- Proteins fold in milliseconds

Folding landscape

Secondary structure

- Single sequence methods
 - Chou-Fasman
 - GOR
- Neural networks
 - PHD
- HMMs

Chou-Fasman

Nameetc	P(a)	P(b)	P(t)	f(i)	f(i+1)	f(i+2)	f(i+3)
Alanin	142	83	66	0.06	0.076	0.035	0.058
Threonie	83	119	96	0.086	0.108	0.065	0.065

Calculate if P(a) > 100 for 4 out 6 AA, assign helix Calculate if P(b) > 100 for 3 out 5 AA assign sheet Calculate p(t) = f(i) ... assign turn Further rules to resolve clashes

Chou and Fasman (1974) Biochemistry

Single sequence methods

- Prediction based on propensity of an AA to occur in helix, sheet or turn
- Chou-Fasman
 - Empirical, rule based
- GOR
 - Log-odds score, Bayesian statistics

Neural network

Machine learning technique inspired by neuronal structures

PHD

Rost (1996) Methods in Enzymology

TMHMM

A. KRYSHTAFOVYCH ET AL., PROTEINS: STRUCTURE, FUNCTION, AND BIOINFORMATICS (5 OCTOBER 2007)

Tertiary structure

Homology modeling

- Threading
 - Fold recognition

Ab initio modeling

RMSD

Root-mean-square deviation

- Distance of backbone atoms
 - Usually cα

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \delta_i^2}$$

Some chemistry

- Intramolecular forces
 - Covalent bonds (400 kcal)
 - Strong but only relevant for cystin
- Intermolecular forces
 - Hydrogen bonds (12 16 kcal)
 - Van der Waals forces
 - Dipole-dipole (0.5 -2 kcal)
 - London (<1 kcal)
 - Buried hydrophobic faces

Lennard-Jones potential

 Summarizes the repulsion of atoms and attraction by van der Waals forces

$$V_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]_{\frac{3}{2}}$$

$$= \varepsilon \left[\left(\frac{r_{m}}{r} \right)^{12} - 2 \left(\frac{r_{m}}{r} \right)^{6} \right]_{\frac{5}{2}}$$

$$= \varepsilon \left[\left(\frac{r_{m}}{r} \right)^{12} - 2 \left(\frac{r_{m}}{r} \right)^{6} \right]_{\frac{5}{2}}$$

Souce: Wikipedia. Lennard-Jones potential

Structure prediction

- 1. Find backbone structure
 - 1. Homology modeling
 - 2. Threading
 - 3. Ab initio prediction
- 2. Loop modeling
- 3. Sidechain packing
- 4. Refinement

Homology modeling

- Find homologous sequence (BLAST etc)
- Multiple alignment (Muscle etc)
- Replace backbone in defined, conserved parts
- Check core model and re-align
- Model side chain
- Model loop regions
- Energy minimization

Homology modeling

- Simple procedure for ID>40% over 50 AA (typical values, check for plausbility)
- Difficult if ID <25% over reasonable range
- Automated, SWISSMODEL available for all suitable targets
- If no template can be found:
 - Search template with sensitive methods: threading
 - Build from scratch: ab initio

Threading

- Naïve approach: Perform Homology Modeling for many/all templates, score the best
- Alignments at low %ID become problematic
- Fold recognition occasionally works, models often fail

Ab initio prediction

- Library of k-mers from known structures
- Build "random" structures of k-mers
- Optimize in cycles, using a custom scoring function
- Analyze the top structures according to protein-like appearance and/or expectations from the literature.
- ROSETTA (Baker et al. (1998) outperformed contestants in CASP3.

Problem solved?

Great improvements for globular proteins

- Open issues
 - Membrane proteins
 - Unstructured regions
 - Large assemblies