Proteomics

WS 2014/15

Exercises 3

1. Random variables and probability (easy)

Let $f(x)=x / 15, x=1,2,3,4,5$, zero elsewhere, be the probability function of X.
Find $\operatorname{Pr}(X=1)$ or $2, \operatorname{Pr}(1 / 2<X<5 / 2)$, and $\operatorname{Pr}(1 \leq X \leq 2)$.

2. Binomial distribution

Let X be the number of heads in $\mathrm{n}=7$ independent tosses of an unbiased coin. Find the mean value and the variance of X . What is the probability of $X=5$?

3. Poisson distribution

In a manuscript, it is discovered that only 13.5% of the pages contain no typing errors. If we assume that the number of errors per page is a random variable with a Poisson distribution, find the percentage of pages that have exactly one error.

4. Score distribution

Now the search engine outputs 100 pepetide identifications with scores in descending order. There are 87 identifications scoring larger than s_{1}, in which 8 false identifications are found. In the following table, the last 13 peptide identifications are listed. What is the q-value of the peptide ID scoring s_{8} ?
What is the $F D R\left[s>=s_{8}\right]$? And what is the corresponding FPR?

Peptide identification	Search engine score	True/false
LCEVEEGDKEDVDK	s_{1}	T
YTAQVDAEEKEDVK	s_{2}	T
IVADKDYSVTANSK	s_{3}	T
TGIEIIKK	s_{4}	T
DLGEEHFK	s_{5}	T
TASSDTSEELNSQDSPK	s_{6}	F
GAGGENEPPAAAPEPR	s_{7}	T
IKDPDAAKPEDWDDR	s_{8}	T
VDEVGGEALGR	s_{9}	T
SEEQLKEEGIEYK	s_{10}	F
LHVDPENFK	s_{11}	T
FSTVAGESGSADTVRDPR	s_{12}	T
AEEDEILNR	s_{13}	F

5. EM algorithm: One step (medium)

Given $x=[-6,-5,-4,0,4,5,6]$ and the initial parameters $\mu_{1}=-1$ and $\mu_{2}=6$, $\sigma_{1}=2, \sigma_{2}=1, \pi_{1}=\pi_{2}=0.5$.

Perform the first iteration of the EM algorithm, i.e., calculate the responsibilities for the first component [$=1$-second] for each datum below, $r_{1,1}, r_{1,5}, r_{1,6}$, then give MLEs of the new parameters for one component: $\mu_{1}, \sigma_{1}, \pi_{1}$.

6. Working on a discrete joint probability table

x	y	$\mathrm{P}(\mathrm{X}=\mathrm{x}, \mathrm{Y}=\mathrm{y})$
0	1	0.2
0	2	0.1
1	1	0.0
1	2	0.2
2	1	0.3
2	2	0.2

Given the following setting: The random variable X has a range of $\{0,1,2\}$ and the random variable Y has a range of $\{1,2\}$. The joint distribution of X and Y is given by the above table.

Calculate the following marginal probabilities:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)= \\
& \mathrm{P}(\mathrm{X}=1)= \\
& \mathrm{P}(\mathrm{X}=2)= \\
& \mathrm{P}(\mathrm{Y}=0)= \\
& \mathrm{P}(\mathrm{Y}=1)= \\
& \mathrm{P}(\mathrm{Y}=2)=
\end{aligned}
$$

Calculate the conditional probability distribution of X given $\mathrm{Y}=2$:
$P(X=0 \mid Y=2)=$
$P(X=1 \mid Y=2)=$
$P(X=2 \mid Y=2)=$
Calculate the expectation values:
$\mathrm{E}(\mathrm{X})=$
$\mathrm{E}(\mathrm{Y})=$
$\mathrm{E}(\mathrm{XY})=$
Are X and Y independent?

