0PENMS

OpenMS Tutorial

The OpenMS Developers

Mathias Walzer, Timo Sachsenberg, Fabian Aicheler,
George Rosenberger, Hannes Roest,
Marc Rurik, Stephan Aiche, Johannes Veit,
Knut Reinert, and Oliver Kohlbacher

Creative Commons Attribution 4.0 International (CC BY 4.0)

Contents

1 General remarks

2 Getting started
DAta CONVETSION o o o e e e s,

2.1
2.2
2.3

Data visualization using TOPPView i
Introduction to KNIME /OpenMS

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7

Install OpenMS usingKNIME
KNIME Concepts e
Overview of the graphical userinterface
Creatingworkflows
Sharingworkflows
Duplicatingworkflows
Aminimalworkflow

3 Label-free quantification

3.1
3.2

3.3
3.4

Introduction
Peptide Identification.

3.2.1

Bonus task: identification using several search engines

Quantification

Combining quantitative information across several label-free experiments . .

3.4.1

Bonus task: data analysisinKNIME

4 Quality Control
Introduction

4.1
4.2
4.3

4.4

4.31
4.3.2
4.3.3
4.3.4
4.3.5

MasSS ACCUTACY . . v v v o e e e e e e e e e e e e e e
FractionalMass
Final preparations

Inspect the qualityreports

18
18
18
21
22
23
25

5 Metabolomics

7

5.1
5.2
5.3
54

5.5

Introduction
Quantifying metabolites across several experiments.
Identifying metabolites in LC-MS/MSsamples
ConvertyourdataintoaKNIMEtable
5.4.1 Bonustask: Visualisingdata
Downstream data analysisand reporting
5.5.1 DatapreparationID e
5.5.2 DatapreparationQuant
5.5.3 Statisticalanalysis
5.5.4 Datapreparation forReporting.

OpenSWATH

6.1
6.2
6.3
6.4

6.5
6.6
6.7

Introduction
Installation of OpenSWATH
Installation of mProphet
Generating the Assay Library
6.4.1 Generating TraML from transitionlists.
6.4.2 AppendingdecoystoaTraML.,
OpenSWATHKNIME e
Example dataset
Real-life applications

An introduction to pyOpenMS

7.1
7.2

7.3
7.4

Introduction
Installation
721 WINdOWSs L,
7.2.2 MacOSX10.8 e
7.2.3 LINUX .« . e
Buildinstructions
Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV
7471 BasiCS. . . v v i e e
7.4.2 Loadingdatastructures with pyOpenMS

31
31
31
33
34
35
36
37
37
37
38

40
40
40
40
41
41
43
43
45
45

7.4.3 Converting datain the featureXMLtoa TSV
7.4.4 Puttingthingstogether,

7.4.5 Bonus task

1 General remarks

« This handout will guide you through an introductory tutorial for the OpenMS/TOPP
software package [1].

« OpenMS [2] is a versatile open-source library for mass spectrometry data analysis.
Based on this library, we offer a collection of command-line tools ready to be used by
end users. These so-called TOPP tools (short for “The OpenMS Proteomics Pipeline”) [3]
can be understood as small building blocks of arbitrary complex data analysis work-
flows.

* In order to facilitate workflow construction, OpenMS was integrated into KNIME [4],
the Konstanz Information Miner, an open-source integration platform providing a
powerful and flexible workflow system combined with advanced data analytics, vi-
sualisation, and report capabilities. Raw MS data as well as the results of data pro-
cessing using TOPP can be visualized using TOPPView [5].

« In this hands-on tutorial session, you will become familiar with some of the basic func-
tionalities of OpenMS/TOPP, TOPPView, and KNIME and learn how to use a selection
of TOPP tools used in the tutorial workflows.

 All data referenced in this tutorial can be found in the & Example_Data folder that
came with this tutorial.

2 Getting started

2.1 Data conversion

Each MS instrument vendor has one or more formats for storing the acquired data. Con-
verting these data into an open format (preferably mzML) is the very first step when you
want to work with open-source mass spectrometry software. A freely available conversion
toolis ProteoWizard. The OpenMS installation package for Windows automatically installs
ProteoWizard, so you do not need to download and install it separately.

Please note that due torestrictions from the instrument vendors, file format conversion
for most formats is only possible on Windows systems, so exporting from the acquisition
PC connected to the instrument is usually the most convenient option. All files used in this
tutorial have already been converted to mzML by us, so you do not need to do it yourself.

2.2 Data visualization using TOPPView

Visualizing the data is the first step in quality control, an essential tool in understanding
the data, and of course an essential step in pipeline development. OpenMS provides a
convenient viewer for some of the data: TOPPView.

We will guide you through some of the basic features of TOPPView. Please familiarize
yourself with the key controls and visualization methods. We will make use of these later
throughout the tutorial. Let's start with a first look at one of the files of our tutorial data
set:

« Start TOPPView (see Start-Menu or Applications on MacOS)

« Go to [File Open File], navigate to the directory where you copied the contents of
the USB stick to, and select &3 0penMS » small» velos005614.mzML . This file contains
a reduced LC-MS map (only a selected RT and m/z range was extracted using the

TOPP tool FileFilter) of a label-free measurement of the human platelet proteome
recorded on an Orbitrap velos. The other two mzML files contain technical replicates
of this experiment.

« Play around.

 Three action modes are supported, one for translation, one for zooming and one for
measuring:

— Zoom mode

* All previous zoom levels are stored in a zoom history. The zoom history can

be traversed using + or +B or the mouse wheel (scroll up and

down).

* Zooming into the data: either mark an area in the current view with your
mouse while holding the left mouse button plus the |ctrl key to zoom to this
area or use your mouse wheel to traverse the zoom history.

* |f you have reached the end of the history and keep on pressing [ctrl]+[+ | or
scroll up, the current area will be enlarged by a factor of 1.25

* Pressing the Backspace key resets the zoom and zoom history.
- Translate mode

* |t is activated by default.

* Move the mouse while holding the mouse button down to translate the cur-
rent view (when zoomed in).

* Arrow keys can be used to translate the view without entering translate
mode.

— Measure mode

* |tis activated using the key.

* Press the left mouse button down while a peak is selected and drag the
mouse to another peak to measure the distance between peaks.

* This mode is implemented in the 1D and 2D mode only.

* Right click on your 2D map and select [Switch to 3D view] and examine your data in 3D
mode

« Go back to the 2D view. In 2D mode, visualize your data in different normalization
modes, use linear, percentage and log-view (icons on the upper left tool bar).

Note: On Apple OS X, due to a bug in one of the external libraries used by
OpenMS, you will see a small window of the 3D mode when switching to 2D.
Close the 3D tab in order to get rid of it.

* In TOPPView you can also execute TOPP tools. Go to [Tools Apply tool (whole Iayer)] and

choose a TOPP tool (e.g., FileInfo) and inspect the results.

2.3 Introduction to KNIME / OpenMS

Using OpenMS in combination with KNIME you can create, edit, open, save, and run work-
flows combining TOPP tools with the powerful data analysis capabilities of KNIME. Work-
flows can be created conveniently in a graphical user interface. The parameters of all in-
volved tools can be edited within the application and are also saved as part of the work-
flow. Furthermore, KNIME interactively performs validity checks during the workflow edit-
ing process, in order to make it more difficult to create an invalid workflow.

Throughout most of the parts of this tutorial you will use KNIME to create and execute
workflows. This first step is to make yourself familiar with KNIME.

2.3.1 Install OpenMS using KNIME

Before we canstart with the tutorial we need toinstall all the required extension for KNIME.
First we will install the OpenMS plugin, providing all the OpenMS nodes. Afterwards we will
install some additional plugins that we will use in the more advanced part of this tutorial.

1. Open KNIME.

2. Click on {Help>> Install New Software...]

3. Inthe now opendialog choose (inthe upperright corner of the dialog) to define
a new update site. In the opening dialog enter the following details.
Name: Trunk Community Contributions
Location: http://tech.knime.org/update/community-contributions/trunk/

4. After pressing KNIME will show you all the contents of the added Update Site,
containing also the OpenMS nodes.

5. Select the OpenMS nodes in the category "KNIME Community Contributions - Bioin-
Formatics & NGS” and click .

6. Follow the instructions and after a restart of KNIME the OpenMS nodes will be avail-

able under “Community Nodes".

Note: For this tutorial we use a pre-release version of OpenMS 1.12. While not
being a full release, it was nevertheless intensively tested to ensure its functional-
ity for this tutorial. For regular use we recommend using the latest stable OpenMS
release. To install the latest stable release skip Steps 3 and 4 and instead choose
the update site | Trusted Community Contributions|. Please note that some of the work-

flows shown here require OpenMS 1.12 and therefore will not work with OpenMS
1.11.1 downloaded from the stable update site.

For the rest of the tutorial we will also need some more plugins, that can be installed
similar to the OpenMS nodes.

1. Again, click on [Help>> Install New Software...]

2. From the drop down list select the [KNIME Analytics Platform Update Site

3. Now select the following plugins from the KNIME & Extensions category

KNIME Base Chemistry Types & Nodes
KNIME Chemistry Add-Ons

KNIME File Handling Nodes

KNIME Interactive R Statistics Integration
KNIME Math Expression (JEP)

KNIME Report Designer

KNIME SVG Support

KNIME XLS Support

KNIME XML-Processing

10

4. And the following plugin from the Marvin Chemistry Extensions (donated by Infocom &
Chemaxon) category

« ChemAxon/Infocom Marvin Extensions Feature

5. Click and follow the instructions.

2.3.2 KNIME Concepts

AworkFflow is a sequence of steps applied to a single or multiple input data sets to process
and analyse this data. In KNIME such workflows are implemented graphically by combining
so-called nodes.

A node represents a single analysis step in a workflow. Nodes have input and output
portswhere the data goesinto to the node or the results are provided for other nodes after
processing, respectively. KNIME distinguishes between different port types, representing
differenttypes of data. The most common representationin KNIME are tables (similar to an
excel sheet). Those ports are marked with a small triangle. For OpenMS we use a different
port type, so called file ports, representing complete files. Those ports are marked by a
small grey box. Dark grey boxes represent mandatory inputs and light grey boxes optional
inputs.

Nodes can have three different states, indicated by the small traffic light below the
node.

« Inactive, failed, and not yet fully configured nodes are marked red.
 Configured but not yet executed nodes are marked yellow.

* Successfully executed nodes are marked green.

If the node execution failed the node will switch to the red state.

Most nodes will be configured as soon as all input ports are connected. For some nodes
additional parameters have to be provided that cannot be either guessed from the data or
filled with sensible defaults. In this case, of if you want to customise the default configura-
tion, you can open the configuration dialog of a node with a double-click on the node. For
OpenMS you will see a configuration dialog like the one shown in Figure 1.

11

Dialog - 0:4 - FileFilter

OutputTypes | Flow Variables = Memory Policy |

Parameter Value Type
¥ || FileFilter
| in_type string choice
| out_type string choice
ot : string
| mz : string
| pe_mz : string
| int : string
| sort false bool
| threads 1 integer [-inf:+inf]
¥ | peak_options
| sn 0.0 double [-inf:+inf]
| rm_pc_charge [integer list [-inf-+inf]
| level (1, 2, 3] integer list [-inf:+inf]
| sort_peaks false boal
| no_chromatograms false bool
| remove_chromatograms false boal
| mz_precision a4 string choice
| int_precision 32 string choice
| indexed_file false bool
¥ [numpress
| masstime none string choice

MSn (n>=2) precursor filtering according to their m/z value. Do not use this
flag in conjunction with 'mz', unless you want to actually remove peaks in
spectra (see 'mz'). RT filtering is covered by 'rt' and compatible with this flag.

Show advanced parameter

OK | | Apply | [cancel | |®

Figure 1: Node configuration dialog of an OpenMS node.

Note: OpenMS distinguishes between normal parameters and advanced parame-
ters. Advanced parameters are by default hidden from the users since they should
only rarely be customised. In case you want to have a look at the parameters or
need to customise them in one of the tutorials you can show them by clicking on

the checkbox |Show advanced parameter| in the lower part of the dialog.

The dialog shows the individual parameters, their current value and type, and, in the lower
part of the dialog, the documentation for the currently selected parameter.
2.3.3 Overview of the graphical user interface

The graphical user interface (GUI) of KNIME consists of different components or so called
panels that are shown in Figure 2. We will shortly introduce the individual panels and their
purpose below.

12

800 KNIME.

bEBBDDDE

Workflow Editor

le Repository

uuuuuuuuuuuu

Console

Outline

= B ¢ Node Description &%
debug

Node Description Spdatanta

threads
Sets the number of threads allowed to be used by the TOPP tool
no_progress
Disables progress logging to command line:
test
Enables the test mode (needed for interal use only)

Ports

Input Ports
0 Input file [featureXML,consensusXML]

Output Ports

0 Optional output bt file. If or left out, the output is written to
the command line. [6]

Views

MapStatistics Std Output

‘The text sent to standard out during the execution of MapStatistics.

Figure 2: The KNIME workbench.

WorkFflow Editor The workflow editor is the central part of the KNIME GUI. Here you as-
semble the workflow by adding nodes from the Node Repository via "drag & drop”.
Nodes can be connected by clicking on the output port of one node and releasing the
mouse at the desired input port of the next node.

Workflow Explorer Shows a list of available workflows (also called workflow projects).
You can open a workflow by double clicking it. A new workflow can be created with

a right-click in the Workflow Explorer followed by selecting [New KNIME Workﬂow...\.

Node Repository Shows all nodes that are available in your KNIME installation. Every plu-
gin you install will provide new nodes that can be found here. The OpenMS nodes

can be found in [Community Nodes OpenMS]. Nodes for managing files (e.g., Input Files

or Output Folders) can be foundin [Community Node5> GenericKnimeNodes]. You can search

the node repository by typing the node name into the small text box in the upper

part of the node repository.

Outline The Outline panel contains a small overview of the complete workflow. While of
limited use when working on a small workflow, this feature is very helpful as soon as

the workflows get bigger.

13

Console In the console panel warning and error messages are shown. This panel will pro-
vide helpful information if one of the nodes failed or shows an warnings sign.

Node Description As soon as a node is selected, the Node Description window will show
the documentation of the node including documentation for all its parameters. For
OpenMS nodes you will also find a link to the tool page in the online documentation.

2.3.4 Creating workflows

Workflows can easily be created by a right click in the Workflow Explorer followed by click-
ing on |New KNIME Workflow.....

2.3.5 Sharing workflows

To be able to share a workflow with others KNIME supports the import and export of com-
plete workflows. To export a workflow select it in the Workflow Explorer and select
Export KNIME Workflow...‘. KNIME will export workflows as a zip file containing all the infor-

mation on nodes, their connections, and their configuration. Those zip files can again be
imported by selecting |File)) Import KNIME Workflow... |

Note: For your convenience we added all workflows discussed in this tutorial to
the &3Workflows folder. If you want to check your own workflow by comparing it
to the solution or got stuck, simply import the full workflow from the correspond-
ing zip file.

2.3.6 Duplicating workflows

During the tutorial a lot of the workflows will be created based on the workflow from a
previous task. To keep the intermediate workflows we suggest you create copies of your
workflows so you can see the progress. To create a copy of your workflow follow the fol-
lowing steps

* Right click on the workflow you want to create a copy of in the Workflow Explorer

and select .

14

» Right click again somewhere on the workflow explorer and select Paste|.

« This will create a workflow with same name as the one you copied with a (2) ap-
pended.

« To distinguish them later on you can easily rename the workflows in the Workflow
Explorer by right clicking on the workflow and selecting .

Note: To rename a workflow it has to be closed.

2.3.7 A minimal workflow

Let us now start with the creation of our very first, very simple workflow. As a first step,
we will gather some basic information about the data set before starting the actual devel-
opment of a data analysis workflow.

» Create a new workflow.

« Add an Input Filenode andanOutput Folder node (to be foundin [Community Nodes

GenericKnimeNodes IO] andaFileInfonode (tobefoundinthe category[Community Nodes

>OpenMS>> File Handling]) to the workflow.

« Connect the Input File node to the FileInfo node, and the first output port of the
FileInfo node to the Output Folder node.

Note: In case you are unsure about which node port to use, hovering the
cursor over the port in question will display the port name and what kind of
input it expects.

The complete workflow is shown in Figure 3. FileInfo can produce two different kinds
of output files.

« All nodes are still marked red, since we are missing an actual input file. Double-click
the Input File node and select. In the file system browser select &310penMS» tiny
»velos005614.mzML and click . Afterwards close the dialog by clicking .

15

Input File Filelnfo Output Folder

Q @é Q
Node 5 Node 6 Node 7

Figure 3: A minimal workflow calling FileInfo on a single file.

Note: Make sure to use the “tiny” version this time, not “small”, for the sake
of faster workflow execution.

« The Input File node and the FileInfo node should now have switched to yellow,
but the Ooutput Folder node is still red. Double-click on the Output Folder node and
click on to select an output directory for the generated data.

« Great! Your first workflow is now ready to be run. Press + to execute the
complete workflow. You can also right click on any node of your workflow and select

from the context menu.

« The traffic lights tell you about the current status of all nodes in your workflow. Cur-
rently running tools show either a progress in percent or a moving blue bar, nodes
waiting for data show the small word “queued”, and successfully executed ones be-
come green. If something goes wrong (e.g., a tool crashes), the light will become
red.

* In order to inspect the results, you can just right-click the Output Folder node and

select |View: Open the output folder]. You can then open the text file and inspect its con-
tents. You will find some basic information of the data contained in the mzML file,

e.g., the total number of spectra and peaks, the RT and m/z range, and how many
MS1 and MS2 spectra the file contains.

Now consider you would like to gather this information for more then one file. We will
now modify the workflow to compute the same information on three different files and
then write the output files to a folder.

« We start from the previous workflow.

16

Input Files ZipLoopStart Filelnfo ZipLoopEnd Output Folder

= - ™

Node 1 Node 3 Node 5 Node 4 Node 2

Figure 4: A minimal workflow calling FileInfo on multiple files in a loop.

« First we need to replace our single input file with multiple files. Therefore we add
the Input Files node from the category [Community Nodes>> GenericKnimeNodes> IO]_

* To select the files we double-click on the Input Files node and click on . In the
filesystem browser we select all three files from the directory €3 0penMS» tiny. And

close the dialog with .

« We now add two more nodes: the zZipLoopStart and the ZipLoopEnd node from the

Category[Community Nodes)) GenericKnimeNodes F|OW],

« Afterwards we connect the Input Files node to the first port of the zZipLoopStart
node, the first port of the ZipLoopStart node to the FileInfo node, the first output
port of the FileInfo node to the first input port of the ZipLoopEnd node, and the
first output port of the zZipLoopEnd node to the Output Folder node. The complete
workflow is shown in Figure 4

« The workflow is already complete. Simply execute the workflow and inspect the out-
put as before.

17

3 Label-free quantification

3.1 Introduction

In this chapter, we will build a workflow with OpenMS / KNIME to quantify a label-free
experiment. Label-free quantification is a method aiming to compare the relative amounts
of proteins or peptides in two or more samples. We will start from the minimal workflow
from the last chapter and, step-by-step, build a label-free quantitation workflow.

3.2 Peptide Identification

As a start, we will extend the minimal workflow so that it performs a peptide identification
using the OMSSA [6] search engine. Since OpenMS version 1.10, OMSSA is included in the
OpenMS installation, so you do not need to download and install it yourself.

« Instead of Filelnfo, we want to perform OMSSA identification, so we simply replace
the FileInfo node with the OMSSAAdapter node | Community Nodes) OpenMS) Identification),
and we are almost done. Just make sure you have connected the ZipLoopStart node
with the in port of the OMSSAAdapter node.

« OMSSA, like most mass spectrometry identification engines, relies on searching the
input spectraagainst sequence databases. Thus, we need tointroduce a search database
input. As we want to use the same search database for all of our input files, we can
just add a single Input File node to the workflow and connect it directly with the
OMSSAAdapter database port. KNIME will automatically reuse this Input node each
time a new ZipLoop iteration is started. In order to specify the database, select &3
OpenMS» FASTA» fastafileruniprot_sprot_101104 human_concat.fasta, and we have
a very basic peptide identification workflow.

Note: We recommend to choose a different output directory every time you
extend and run your pipeline again.

Note: You might also want to save your new identification workflow under

18

a different name. Have a look at Section 2.3.6 for information on how to
create copies of workflows.

« The result of a single OMSSA run is basically a number of peptide-spectrum-matches
(PSM) with a score each, and these will be stored in an idXML file. Now we can run
the pipeline and after execution is finished, we can have a first look at the results:
just open the input files folder with a file browser and from there open a mzML file
in TOPPView.

« Here, you can annotate this spectra data file with the peptide identification results.
Choose |Tools)) Annotate with identification| from the menu and select the idXML file that
OMSSAAdapter generated (it is located within the output directory that you specified
when starting the pipeline).

« Onthe right, select the tab [Identification vieWI. Using this view, you can see all identified
peptides and browse the corresponding MS2 spectra.

Note: Opening the output file of OMSSAAdapter (the idXML file) directly is
also possible, but the direct visualization of an idXML file is less useful.

As you can see, the spectra are annotated with an unusually high number of identifica-
tions, many of which are probably false positives. Therefore, we will tweak the parameters
of OMSSA to better reflect the instruments accuracy of our measurements. Also, we will
extend our pipeline with a false discovery rate (FDR) filter to retain only those identifica-
tions that will yield an FDR of < 1 %.

« Open the configuration dialog of OMSSAAdapter. Since we know that data was ac-
quired using an Orbitrap velos instrument, we can set the precursor mass tolerance
to a smaller value, say 10 ppm. Set precursor_ mass_ tolerance to 10 and
precursor_mass_tolerance_unit_ppm to true.

Note: Whenever you change the configuration of a node the node as well
as all its successors will be reset to the Configured state.

 Set max_precursor_charge to 4, in order to also search for peptides with charges up
to 4.

19

Add Carbamidomethyl (C) as fixed modification and Oxidation (M) as variable modifi-
cation.

Note: To add a modification click on the empty value field in the config-
uration dialog to open the list editor dialog. In the new dialog click .
Thenselect the newly added modification (15dB-biotin (C)) to open the drop
down list where you can select the correct modification.

A common step in analyis is to search not only against a reqular protein database, but
to also search against a decoy database for FDR estimation. The fasta file we used
before already contains such a decoy database. For OpenMS to know which OMSSA
PSM came from which part of the file (i.e. regular versus decoy), we have to index the

results. Therefore extend the workflow with a PeptideIndexer node|Community Nodes

OpenMS))ID Processing]. This node needs the idXML as input as well as the database
File.

Note: You can direct the files of an Input File node to more than just one
destination port.

The decoys in the database are prefixed with “sw”, so we have to set decoy _string to
sw and prefix to true in the configuration dialog of PeptideIndexer accordingly.

Now we can go for the FDR estimation, which will the FalseDiscoveryRate node cal-

culate for us [Community Nodes))OpenMS)) 1D Processing\. As we have a combined search

database and thus only one idXML per mzML we will only use the in port of the
FalseDiscoveryRate node.

In order to set the FDR level to 1%, we need an IDFilter node from Community Nodes)

OpenMS 1D Processing]. Configuring its parameter score — pep to 0.01 will do the trick.
The FDR calculations (embedded in the idXML) from the FalseDiscoveryRate node
will go into the in port of the IDFilter node.

Execute your workflow and inspect the results using the identification view like you
did before. You can export the list of identified peptides using the button.
How many peptides did you identify at this FDR threshold?

20

Note: The finished identification workflow is now sufficiently complex that
we might want to encapsulate it in a Meta node. For this, select all nodes
inside the ZipLoop (excluding the Input File node) and right-click to select
|Collapse into Meta node| and name it ID. Meta nodes are useful when you con-
struct even larger workflows and want to keep an overview.

Input Files ZipLoopStart
"=
()] (=] OMSSAAdapter
Node 1 Node 2 -
La
/= Peptidelndexer FalseDiscoveryRate IDFilter ZipLoopEnd Output Folder
Node 3
Input File () () () QD) ()
Node 7 Node 8 Node 9 Node 4 Node 5
(Q=0)
Node 6

Figure 5: OMSSA ID pipeline including FDR filtering

3.2.1 Bonus task: identification using several search engines

Note: If you are ahead of the tutorial or later on, you can further improve your
FDR identification workflow by a so-called consensus identification using several
search engines.

It has become widely accepted that the parallel usage of different search engines can in-
crease peptide identification rates in shotgun proteomics experiments. The ConsensusID
algorithm is based on the calculation of posterior error probabilities (PEP) and a combina-
tion of the normalized scores by considering missing peptide sequences.

» NexttotheOMSSAAdapter add a XTandemAdapter \Community Nodes) OpenMS Identification]
node and set its parameters and ports analogously to the OMSSAAdapter.

» To calculate the PEP, introduce each a IDPosteriorErrorProbability|Community Nodes)
OpenMS)) ID Processing| node to the output of each ID engine adapter node. This will
calculate the PEP to each hit and output an updated idXML.

21

 To create a consensus we must first merge these two files with a FileMerger node

lCommunity Nodes)) GenericKnimeNodes FIow] so we can then merge the corresponding IDs
with a IDMerger [Community Nodes)) OpenMS)) File Handling],

» Now we can create a consensus identification with the ConsensusID |Community Nodes)

OpenMS) ID Processing] node. We can connect thisto the PeptideIndexer and goalong
with our existing FDR filtering.

Note: By default, X!'Tandem takes additional enzyme cutting rules into con-
sideration (besides the specified tryptic digest). Thus you have to set Pep-
tidelndexer’s enzyme — specificity parameter to semi to accept X!Tandems
semi tryptic identifications as well.

Input Files ZipLoopStart

-
IDPosteriorErrorProbability
(@=D)} (=]

OMSSAAdapter

Node 1 Node 2 —
b
QD)
= Node 12 FileMerger IDMerger Consensus! D
Node 3

= = Peptidelndexer ~ FalseDiscoveryRate IDFilter ZipLoopEnd Output Folder
Node 14 Node 15 Node 16

= = __— " = _— o T~
IDPosteriorErrorProbabjlity — s il : m
Input File ndemAdapter — = == = = =
— L Node 7 Node 8 Node 9 Node 4 Node §
= e =3
= Node 13
Node 6 Node 11

Figure 6: Complete consensus identification workflow

3.3 Quantification

Now that we have successfully constructed a peptide identification pipeline, we can add
quantification capabilities to our workflow.

- Add a FeatureFinderCentroided node |Community Nodes)) OpenMS)) Quantitation| which
getsinput from the first output port of the ZipLoopStart node. Also, add an IDMapper
node [Community Node5>> OpenMS>> ID Processinglwhich getsinput from the FeatureFind-
erCentroided node and the ID Meta node (or IDFilter node if you haven’t used the
Meta node). The output of the IDMapper is then connected to the ZipLoopEnd node.

22

 FeatureFinderCentroided finds and quantifies peptide ion signals contained in the
MS1 data. It reduces the entire signal, i.e., all peaks explained by one and the same
peptide ion signal, to a single peak at the maximum of the chromatographic elution
profile of the monoisotopic mass trace of this peptide ion and assigns an intensity
corresponding to the area under the monoisotopic mass trace.

* FeatureFinderCentroided producesafeatureXML file as ouput, containing only quan-
titative information of so-far unidentified peptide signals. In order to annotate these
with the corresponding ID information, we need the IDMapper node.

« Run your pipeline and inspect the results of the IDMapper node in TOPPView.

« In order to assess how well the feature finding worked, you can project the features
contained in the featureXML file on the raw data contained in the mzML file. In
TOPPView choose and select
£30penMS» tiny» velos005614.mzML. In the dialog that popsup, select[Open in) New |ayer].
Zoom in until you see boxes (Found features) around the peptide signals in the raw
data.

Note: The RT range is very narrow. Thus, select the full RT range and zoom
only into the m/z dimension by holding down CTRL (CMD on the Mac) and
repeatedly dragging a narrow box from the very left to the very right.

 You can see which features were annotated with a peptide identification by first se-
lecting the featureXML file in the Layers window on the upper right side and then
clicking on the icon with the letters A, B and C on the upper icon bar. Now, click on
the small triangle next to that icon and select Peptide identification.

3.4 Combining quantitative information across several label-free ex-
periments

So far, we successfully performed peptide identification as well as quantification on indi-
vidual LC-MS maps. For differential label-free analyses however, we need to identify and

23

Input Files ZipLoopStart FeatureFinderCentroided IDMapper ZipLoopEnd Output Folder

" I T
= @
[Q=D)] (Q=D)] [Q=D)]
Input files Node 2 Node 11 Node 4 Collect ID results
for manual inspection
Input File OMSSAAdapter Peptidelndexer FalseDiscoveryRate IDFilter Output Folder

a o a—Ta v
[QeD)] (Q=D)] (Q=D)] (Q=D)] (=] [Q=D)]
Database Node 3 Node 7 Node 8 Node 9 Collect mapped featureXML
for manual inspection

Figure 7: Extended workflow featuring peptide identification and quantification

quantify corresponding signals in different experiments and link them together to com-
pare their intensities. Thus, we will now run our pipeline on all three available input files
(replicates) and extend it a bit further, so that it is able to find and link features across
several maps.

Input Files ZipLoopStart FeatureFinderCentroided IDMapper ZipLoopEnd
(T

w8 =
Input files Node 2

Output Folder

»)
(F=FeatuteLinkerUnlabeled@T (== TextExporter / =
Node 14 Node 16 Final results
Ga Ga
(=]

Output Folder &=

G Node 15 Node 17

Input File

Figure 8: Complete identification and label-free quantification workflow

* To find features across several maps, we first have to align them to correct for reten-
tion time shifts between the different label-free measurements. With the MapAlign-
erPoseClustering [Community Nodes)) OpenMS)) Map Alignment], we can align correspond-

ing peptide signals to each other as closely as possible by applying a transformation
in the RT dimension.

Note: MapAlignerPoseClustering consumes several featureXML files and
its output should still be several featureXML files containing the same fea-
tures, but with the transformed RT values. In its configuration dialog, make
sure the OutputTypes is set to featureXML.

» With the FeatureLinkerUnlabeledQT node [Community Nodes)) OpenMS)) Map Alignment],
we can then perform the actual linking of corresponding features. Its output is a

24

consensusXML file containing linked groups of corresponding features across the dif-
ferent experiments.

« Since the overall intensities can vary a lot between different measurements (for ex-
ample, because the amount of injected analytes was different), we apply the Consen-
susMapNormalizer [Community NodeS>>OpenMS>> Map Alignment] as a last processing step.
Configure its parameters with setting algorithm_type to median. It will then normalize
the maps in such a way that the median intensity of all input maps is equal.

« Finally, we export the resulting normalized consensusXML file to a csv format using
TextExporter [Community Nodes)) OpenMS)) File Handling]. Connect its out port to a new

Output Folder node.

Note: You can specify the desired column separation character in the pa-
rameter settings (by default, it is set to “ " (a space)). The output file of
TextExporter can then be opened with external tools, e.g., Microsoft Excel,
for downstream statistical analyses.

3.4.1 Bonus task: data analysis in KNIME

Fordownstream analysis of the quantification results, you can use the ConsensusTextReader
node instead of the Output Folder node to convert the output into a KNIME table (indi-
cated by an arrow as output port). After running the node you can view the KNIME Table
by right clicking on the ConsensusTextReader selecting [Consensus Table]. The output of the
node should now be compatible with most of the nodes of the KNIME base as well as the
R nodes, which leaves room for you to play with these. Possible analyses include:

Task
CJ Fllterlng (Row Filter,Rule-based Row Filter)or grouping (GroupBy; €.g. by

charge) of the identified peptides/proteins.

25

Task

1

Task

v

Task

1

Statistical analysis withR Snippet nodes or the nodes from the KNIME Statis-
tics package.

Plotting of the (cumulative) distribution of g-values, quality scores (of the
consensus features) or other peptide hit properties using R View nodes or
the standard KNIME nodes for plotting (which include interactive function-
ality).

For further inspiration you might take a look at Chapter 5.5 which is describ-
ing different types of analyses using KNIME on metabolomics data.

26

4 Quality Control

4.1 Introduction

Quality Controlis animportant part of mass spectrometry experiments and analyses. How-
ever, workflows and quality control protocols may differ vastly between labs. For this rea-
son, quality control in OpenMS is designed to be very flexible, using a userdefined set of
metrics from a controlled vocabulary (CV), the QC-CV. By using an own CV, Quality Reports
are not limited in its form. Thus, results can be customized and still fit a standard quality
report template. Reports are easy to evaluate due to the design of the used format, gcML.

42 QC-CV

A controlled vocabulary is a list of entries defining each a phrase or keyword in a given con-
text. In our case, a controlled vocabulary entry of a metric can describe both experimental
as well as programmatic environmental variables. It is comprised of a name, an identifier,
and a definition. This definition describes the metric and what aspect of quality control is
conducted with such a metric.

A CV entry also has associated relations, like Chromatogram count is a MS aquisition result
details. This gives the CV a hierarchical structure and should make it easier to comprehend
and also easier to browse (http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=
qcML).

Like this, a set of quality metrics can be chosen according to the requirement of the lab,
researcher or workflow. The content of the vocabulary is community defined. If your
favourite metric, with which you control the quality of your experiments, does not yet have
an entry, feel urged to propose its addition.

Inside a qcML file, you will have a bunch of quality parameters. These belong to a specific
MS run (or set) and combine a value with a CV entry., e.g. 2069 with MS2 spectra count.

4.3 Single run QC

We will start by adapting the label-free quantification workflow as it comprises all the basic
analyses we need to begin with:

27

http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=qcML
http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=qcML

« The spectra data itself,
« the identifications to the spectra and
* the features found on which quantification is based.

Calculating basic statistics and agglomerating quality data will be done by the QCCal-
culator node from |Community Nodes)) OpenMS)) Utilities|. It will also be needed For more ad-
vanced quality metrics later on. The QCCalculator node consumes MS runs (mzML), iden-
tifications (idXML), and found features (featureXML). The output are quality parameters

which are stored in a gcML file. This will make it easy to access the quality data we need.
The gcML file will be handed down from one metric calculation or visualization to another.
Each QC step will append its plot, table, or value. With the gcML file you can also instantly
visualize the metrics you have calculated so far: gcML includes all information, renderable
in all recent browsers, even without an internet connection.

At this point, the gcML will not contain much to look at, so we will start filling it - with
a heatmap-like (RT over M/Z, Intensity color coded) plot of the mass spectrometry ex-
periment itself. We can extract that from the mzML with an ImageCreator node from
Community Nodes)) OpenMS)) Utilities. The plot can then be integrated to the qcML with the
QCEmbedder node from |Community Nodes) OpenMS)) Utilities|. This node is capable to embed

either images or tables into the gcML file as attachment to the quality parameter of a cer-
tain run or set. Thus, it needs as parameters the CV accession of the quality parameter
to which it should to be attached to (gp_att_acc), and a CV accession for the content it-
self (cv_acc) if there is one available. The image from the ImageCreator we will attach to
QC:0000004, which is the MS aquisition result details accession. If a QualityParameter with
that accession does not exist, it will be created for that purpose. And we give itself the CV
QC:0000055 which is the MS experiment heatmap accession. We will not specify a run, since
in a single run QC we are sure there is just one run to consider and the QCEmbedder will
figure that out.

4.3.1 IDratio

Next, we will have a look at the ID ratio. Therefore, import the gqc_id_ratio workflow from
the workflow folder and copy that meta node into your workflow to take input from the

28

QCEmbedder. The ID Ratio meta node will create a plot of the measured spectra vs. the
identified spectrain a M/Z vs. RT map. If you open the meta node, you will see that we can
extract plots or tables just similar to how we could embed them. But this time we handle a
table, which will be extracted in csv format. With dedicated KNIME reader nodes, we read
the tablesinto KNIME and calculate the metric with R. It will map the recorded MS2 spectra
against the Identifications via the RT and M/Z coordinates of their precursors.

The resulting plot will be included in the gcML file and we can move to the next metric.

4.3.2 Totallon Current

Now, we will embed a plot of the total ion current (TIC). As before, import the qc_tic_plot
workflow and copy the metanode into your workflow to recieve the input gcML from the
ID ration meta node. The operation is pretty straight-forward and will yield the total ion
current measured on MS1 level.

4.3.3 Mass Accuracy

To take a closer look at our identifications mass accuracy, we import the qc_mass_accuracy
workflow and copy the meta node to recieve input from the last meta node. This time, two
plotsare being generated. A histogram will show you the distribution of your identification
errors. It should resemble a narrow gaussian distribution.

The other plot will show you the identification errors over time (RT).

Both plots will have the smoothed function of the error plotted in red.

4.3.4 Fractional Mass

Our last plot will be a look on what features we found. Import and copy the metanode
from the gc_fractional_mass workflow. Also, copy the extra input node. This input will be
an external reference file containing all the potential theoretical masses we could see with
the given experiment (53QC» theoretical_masses.txt). It will plot these on nominal vs.
fractional mass in blue and the found feature centroids in red. So a real peptide feature
should be located inside these blue clouds.

29

4.3.5 Final preparations

After we have all the plots embedded and calculated all the QC values we want, we can
get rid of the verbose or residual data we were collecting in order to be able to calculate
everything we want. The QCShrinker node from |Community Nodes)) OpenMS) Utilities| will take
care of that.

4.4 Inspect the quality reports

As we have a ZipLoop in our labelfree quantification workflow, creating a QC report of sev-

eral runs is easy. If you connect the last QC node with a new input port of the ZipLoopEnd

node, you can take the respective ouput port and connect it with a new Output Folder, se-

lect a destination and have a look at the QC reports by opening the gcML files in a browser.
The final workflow, as it should be build in this section, can be seenin Figure 9.

Output Folder

Input File Identification

ks
fasta search DB
Input Files ZipLoopStart F aturedetectior ipLoopEnd tificati utput File
& & - u
—
mzML input Features
QCCalculator
— & Fractional
\wsmb edder IDRatio Mass accura mass plot Tic QCshrinker QCMerger Output File
4 —r = —
ImageCreator
— _ creates plotof tes ‘creates plot of creates TIC
g — measu mase accuracy fractional masses plot removes Quality report
vs. plots lhecr tical verbose data
identified S.
expenmemal
Input File
theoretical masses xt

Figure 9: Complete quality control workflow.

30

5 Metabolomics

5.1 Introduction

Quantitation and identification of chemical compounds are basic tasks in metabolomic
studies. In this tutorial session we construct a UPLC-MS based, label-free quantitation and
identification workflow. Following quantitation and identification we then perform statis-
tical downstream analysis to detect quantitation values that differ significantly between
two conditions. This approach can, for example, be used to detect biomarkers. Here, we
use two spike-in conditions of a dilution series (0.5 mg/l and 10.0 mg/l, male blood back-
ground, measured in triplicates) comprising seven isotopically labeled compounds. Goal
of this tutorial is to detect and quantify these differential spike-in compounds against the
complex background.

5.2 Quantifying metabolites across several experiments

For the quantification of the metabolites we choose a similar approach to the one used for
peptides based on one of OpenMS' feature finder.

« Create a new workflow called for instance "Metabolomics”.

« Add a Input Files node and configure it with all mzML files from &3 Metabolomics »
datasets.

« Add a ZipLoopStart node and connect the Input Files node to the first port of the
ZipLoopStart node.

» Add a FeatureFinderMetabo node (from [Community Nodes)) OpenMS Quantitation] and
connect the first output port of the ZipLoopStart to the FeatureFinderMetabo.

« For an optimal result adjust the following settings. Please note that some of these
are advanced parameters.

31

parameter value
algorithm — common — chrom_fwhm 8.0
algorithm — mtd — trace _termination_criterion | sample_rate
algorithm — mtd — min_trace_length 3.0
algorithm — mtd — max_trace_length 600.0
algorithm — epd — width_filtering off

« Add a ZipLoopEnd node and connect the output of the FeatureFinderMetabo to the

first port of the ZipLoopEnd node.

 After the ZipLoopEnd node add a MapAlignerPoseClustering node ([Community Nodes
OpenMS) Map Alignmentb, setits Output Type to featureXML, and adjust the following

settings
parameter value
algorithm — max_num_peaks_considered -1
algorithm — superimposer — mz_pair_max_distance 0.005
algorithm — superimposer — num_used_points 10000

algorithm — pairfinder — distance_RT — max_difference | 20.0
algorithm — pairfinder — distance_ MZ — max_difference | 20.0

algorithm — pairfinder — distance_MZ — unit

ppm

» AftertheMapAlignerPoseClusteringaddaFeatureLinkerUnlabeledQT ([Community Nodes

OpenMS)) Map Alignment]) and adjust the following settings

parameter

value

algorithm — distance_RT — max_difference
algorithm — distance_MZ — max_difference
algorithm — distance_MZ — unit

40.0
20.0

ppm

 Afterthe FeatureLinkerUnlabeledQT add a TextExporter node ([Community Nodes) OpenMS

File Handling)).

« AddanoOutput Folder node and configureitwithanoutputdirectory where youwant

to store the resulting files.

32

« Run the pipeline and inspect the output.

You should find asingle, tab-separated file containing the information on where metabo-
lites were found and with which intensities. You can also add Output Folder nodes at dif-
ferentstages of the workflow and inspect the intermediate results (e.g., identified metabo-
lite Features for each input map). The complete workflow can be seen in Figure 10. In the
following section we will try to identify those metabolites.

Lcﬁdrm‘lML ir Mass trace extrac Retention time correction and
les

Input Files ZipLoopStart FeatureFinderMetabo ZipLoopEnd MapAlignerPoseClustering FeatureLinkerUnlabeledQT TextExporter Output Folder

[Q=D) [0 [Qe0)] @ce) Qo0 (Q=0)] [G=0)] aeD)]
Node 97 Node 12 Node 106 Node 13 Node 29 Node 6 Node 98 Node 107

Figure 10: Label-free quantification workflow for metabolites

5.3 Identifying metabolites in LC-MS/MS samples

At the current state we found several metabolites in the individual maps but so far don’t

know what they are. To identify metabolites OpenMS provides the AccurateMassSearch

node which searches observed masses against the Human Metabolome Database (HMDB)[7,
8, 9]. We start with the workflow from the previous section (see Figure 10).

« Add aFileConverter node and connect the output of the FeatureLinkerUnlabeledQT
to the incoming port.

« Open the Configure dialog of the FileConverter and select the tab "OutputTypes”.
In the drop down list for FileConverter.1.out select “featureXML”.

« Add an AccurateMassSearch node and connect the output of the FileConverter to
the first port of the AccurateMassSearch.

« Add four Input File nodes and configure them with the following files

— &IMetabolomics» databases» PositiveAdducts.tsv
This Ffile specifies the list of adducts that are considered in the positive mode.
Each line contains the formula and charge of an adduct separated by a semicolon
(e.g. M+H;1+). The mass of the adduct is calculated automatically.

33

— 3Metabolomics» databases» NegativeAdducts.tsv
This file specifies the list of adducts that are considered in the negative mode
analogous to the positive mode.

— 3Metabolomics» databases» HMDBMappingFile. tsv
This file containsinformation from a metabolite database in this case from HMDB.
It has three tab-separated columns mass, formula, and identifier. This allows for
an efficient search by mass.

— (3Metabolomics» databases» HMDB2StructMapping.tsv
This file contains additionalinformation about the identifiers in the mappingfile.
It has four tab-separated columns that contain the identifier, name, SMILES, and
INCHI. These will be included in the result file. The identifiers in this file must
match the identifiers in the HMDBMappingFile.tsv.

* In the same order as they are given above connect them to the remaining input ports
of the AccurateMassSearch node.

« AddanoOutput Folder node andconnectthe first output portof the AccurateMassSearch
node to the output folder.

The result of the AccurateMassSearch node isin the mzTab format [10] so you can easily
openitinatexteditor orimportitinto Excel or KNIME, which we will do in the next section.
The complete workflow from this section is shown in Figure 11.

5.4 Convert your datainto a KNIME table

The result from the TextExporter node as well as the result from the AccurateMassSearch
node are files while standard KNIME nodes display and processes only KNIME tables. To
convert these filesinto KNIME tables we need two different nodes. For the AccurateMassSearch
results we use the SmallMoleculeMzTabReader node ([Community Nodes)) OpenMS)) Conversion
) mzTab), for the result of the TextExpor ter we use the ConsensusTextReader (Community Nodes
>OpenMS>> Conversionb,

When executed, both nodes will import the OpenMS files and provide access to the

data as KNIME tables. You can now easily combine both tables using the Joiner node

34

Retention time correction and

Load mzML ir Mass trace extrac
files.
Input Files ZipLoopStart FeatureFinderMetabo ZipLoopEnd MapAlignerPoseClustering FeatureLinkerUnlabeledQT TextExporter Output Folder
— r T - e) [e
[Q=0)] (=0} [G=D)] [Q=D)] [Q=D)] (Q=D)] (=0} [Q=D)]
Node 97 Node 12 Node 106 Node 13 Node 29 Node 6 Node 98 Node 107
FileConverter
=
[@=m)
Node 99

Structure mapping

Input File

Identification using accurate
search
AcclrateMassSearch

z
5P 1
i

Figure 11: Label-free quantification and identification workflow for metabolites

(Data Manipulation) Column)) Split & Combine) and configuring it to match the m/z and reten-

tion time values of the respective tables. The full workflow is shown in Figure 12.

5.4.1 Bonus task: Visualising data
Now that you have your data in KNIME you should try to get a feeling for the capabilities

of KNIME.

Task
Check out the Molecule Type Cast node to render the structural formula

@ contained in the result table.

Task
Have a look at the Column Filter node to reduce the table to the interesting

G columns, e.g., only the Ids, chemical formula, and intensities.

35

nnnnnnn

Figure 12: Label-free quantification and identification workflow for metabolites that loads
the results into KNIME and joins the tables.

Task
8 Try to compute and visualise the m/z and retention time error of the differ-

ent elements of the consensus features.

5.5 Downstream data analysis and reporting

In this part of the metabolomics session we take a look at more advanced downstream
analysis and the use of the statistical programming language R. As laid out in the introduc-
tion we try to detect a set of spike-in compounds against a complex blood background. As
there are many ways to perform this type of analysis we provide a complete workflow.

Task
8 Import the workflow from &3Workflows» metabolite_analysis.zipin KNIME:

File)) Import KNIME Workflow...|

The section below will guide you in your understanding of the different parts of the
workflow. Once you understood the workflow you should play around and be creative.

36

Maybe create a novel visualization in KNIME or R? Do some more elaborate statistical anal-
ysis? Feel free to experiment and show us your results if you like. Note that some basic R
knowledge is required to fully understand the processing in R Snippet nodes.

5.5.1 Data preparation ID

This part is analogous to what you did for the simple metabolomics pipeline.

5.5.2 Data preparation Quant

The Ffirst part is identical to what you did for the simple metabolomics pipeline. Addition-
ally, we convert zero intensities into NA values and remove all rows that contain at least
one NA value from the analysis. We do this using a very simple R Snippet and subsequent
Missing Value filter node.

Task
8 Inspect theR Snippet by double-clickingonit. The KNIME table thatis passed

to an R Snippet node is available in R as a data.frame named knime.in. The
result of this node will be read from the data.frame knime.out after the script
finishes. Try to understand and evaluate parts of the script (Eval Selection).
In this dialog you can also print intermediary results using for example the R
command head() or cat() to the Console pane.

5.5.3 Statistical analysis

After we linked features across all maps, we want to identify features that are signifi-
cantly deregulated between the two conditions. We will first scale and normalize the data,
then perform a t-test, and finally correct the obtained p-values for multiple testing using
Benjamini-Hochberg. All of these steps will be carried out in individual R Snippet nodes.

« Double-click on the first R Snippet node labeled "log scaling” to open the R Snip-
pet dialog. In the middle you will see a short R script that performs the log scaling.
To perform the log scaling we use a so-called regular expression (grepl) to select all
columns containing the intensities in the six maps and take the log, logarithm.

37

« The output of the log scaling node is also used to draw a boxplot that can be used to
examine the structure of the data. Since we only want to plot the intensities in the
different maps (and not m/z or rt) we first use a Column Filter node to keep only the
columns that contain the intensities. We connect the resulting table to a Box Plot
node which draws one box for every column in the input table. Right-click and select

View: Box Plot]|,

« The median normalization is performed in a similar way to the log scaling. First we
calculate the medianintensity for each intensity column, then we subtract the median
from every intensity.

« Open the Box Plot connected to the normalization node and compare it to the box
plot connected to the log scaling node to examine the effect of the median normal-
ization.

« To perform the t-test we defined the two groups we want to compare. Then we call
the t-test for every consensus feature unless it has missing values. Finally we save the
p-values and fold-changes in two new columns named p-value and FC.

« The Numeric Row Splitter is used to filter less interesting parts of the data. In this
case we only keep columns where the fold-change is > 2.

« We adjust the p-values for multiple testing using Benjamini-Hochberg and keep all
consensus features with a g-value < 0.01 (i.e. we target a false-discovery rate of 1%).

5.5.4 Data preparation for Reporting

Following the identification, quantification and statistical analysis our data is merged and
formatted for reporting. First we want to discard our normalized and logarithmized inten-
sity values in favor of the original ones. To this end we first remove the intensity columns
(Column Filter) and add the original intensities back (Joiner). Note that we use an /nner
Join'. Combining ID and Quantification table into a single table is again achieved using a
Joiner node.

Yinner Joinis a technical term that describes how database tables are merged.

38

Data Preparation for Reporting

Molecule Type Cast Column to Grid Column Filter Results to
o By p————p 3 Excel
XLS Writer
Convert smll string to Node 82 Node 128
SM\LE (drawable)
Combine ID dQ (f ation Data 7
=L

Column Filter Joiner Node 114

— g —

Figure 13: Data preparation for reporting

Question
What happens if we use an Left Outer Join, Right Outer Join or Full Outer Join
instead of the /nner Join?

Task
8 Inspect the output of the join operation and after the Molecule Type Cast.

While all relevant information is now contained in our table the presentation could be
improved. Currently, we have several rows corresponding to a single consensus feature
(=linked feature) but with different, alternative identifications. It would be more conve-
nient to have only one row for each consensus feature with all accurate mass identifications
added as additional columns. To achieve we use the Column to Grid node that flattens sev-
eral rows with the same consensus number into a single one. Note that we have to specify
the maximum number of columns in the grid so we set this to a large value (e.g. 100). We
finally select only the columns we are interested in with the last Column Filter and export
the data to an Excel file (XLS Writer).

39

6 OpenSWATH

6.1 Introduction

OpenSWATH [11] is a module of OpenMS that allows analysis of LC-MS/MS DIA (data in-
dependent acquisition) data using the approach described by Gillet et al. [12]. The DIA
approach described there uses 32 cycles to iterate through precursor ion windows from
400-426 Da to 1175-1201 Da and at each step acquires a complete, multiplexed fragment
ion spectrum of all precursors present in that window. After 32 fragmentations (or 3.2 sec-
onds), the cycle is restarted and the first window (400-426 Da) is fragmented again, thus
delivering complete “snapshots” of all fragments of a specific window every 3.2 seconds.

The analysis approach described by Gillet et al. extracts ion traces of specific fragment
ions from all MS2 spectra that have the same precursor isolation window, thus generating
data that is very similar to SRM traces.

6.2 Installation of OpenSWATH

OpenSWATH has been fully integrated since OpenMS 1.10 (http://open-ms.sourceforge.
net 3, 2, 13]).

6.3 Installation of mProphet

mProphet (http://www.mprophet.org/) [14] is available as standalone script in &3 Exter-
nal_Tools » mProphet. R (http://www.r-project.org/) and the package MASS (http://
cran.r-project.org/web/packages/MASS/) are further required to execute mProphet. Please
obtain a version for either Windows, Mac or Linux directly from CRAN.

pyprophet, a much faster reimplementation of the mProphet algorithm is available
from PyPI (https://pypi.python.org/pypi/pyprophet/). The usage of pyprophet instead
of mProphet is suggested for large-scale applications, but the installation requires more
dependencies and therefore, for this tutorial the application of mProphet is described.

40

http://open-ms.sourceforge.net
http://open-ms.sourceforge.net
http://www.mprophet.org/
http://www.r-project.org/
http://cran.r-project.org/web/packages/MASS/
http://cran.r-project.org/web/packages/MASS/
https://pypi.python.org/pypi/pyprophet/

6.4 Generating the Assay Library
6.4.1 Generating TraML from transition lists

OpenSWATH requires the assay libraries to be supplied in the TraML format [15]. To enable
manual editing of transition lists, the TOPP tool ConvertTSVToTraML is available that uses
tab separated files as input. Example datasets are provided in ©30penSWATH» assay. Please
note that the transition lists need to be named .csv.

The header of the transition list contains the following variables (with example values
in brackets):

PrecursorMz
The mass-to-charge (m/z) of the precursor ion. (728.88)

ProductMz
The mass-to-charge (m/z) of the product or fragmention. (924.539)

Tr_recalibrated
The normalized retention time (or iRT) [16] of the peptide. (26.5)

transition_name
A unique identifier for the transition.
(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2_y8)

CE
The collision energy that should be used for the acquisition. (27)
Optional (not used by OpenSWATH)

LibraryIntensity

The relative intensity of the transition. (3305.3)

transition_group_1id
A unique identifier for the transition group.
(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2)

decoy
A binary value whether the transition is target or decoy (target:0, decoy:1). (0)

41

PeptideSequence
The unmodified peptide sequence. (ADSTGTLVITDPTR)

ProteinName
A unique identifier for the protein. (AQUA4SWATH_HMLangeA)

Annotation
The fragment ion annotation. (y8)
Optional (not used by OpenSWATH)

FullUniModPeptideName
The peptide sequence with UniMod modifications. (ADSTGTLVITDPTR(UniMod:267))

MissedCleavages
The number of missed cleavages during enzymatic digestion. (0)
Optional (not used by OpenSWATH)

Replicates
The number of replicates. (0)
Optional (not used by OpenSWATH)

NrModifications
The number of modifications. (0)
Optional (not used by OpenSWATH)

PrecursorCharge
The precursor ion charge. (2)

GrouplLabel
The stable isotope label. (light)
Optional (not used by OpenSWATH)

UniprotID
The Uniprot ID of the protein. ()
Optional (not used by OpenSWATH)

To convert transitions lists to TraML, use ConvertTSVToTraML:

42

Linux or Mac
On the Terminal:

ConvertTSVToTraML —in OpenSWATH_SGS_AssaylLibrary.csv —out OpenSWATH_SGS_AssaylLibrary.«
TraML

Windows
On the TOPP command line:

ConvertTSVToTraML.exe —in OpenSWATH_SGS_AssaylLibrary.csv —out OpenSWATH_SGS_AssaylLibrary«
. TraML

6.4.2 Appending decoys to a TraML

To append decoys to a TraML, the TOPP tool OpenSwathDecoyGenerator can be used:

Linux or Mac
On the Terminal:

OpenSwathDecoyGenerator —in OpenSWATH_SGS_AssaylLibrary.TraML —out <+
OpenSWATH_SGS_AssaylLibrary_with_Decoys.TraML —min_transitions 3 —max_transitions 6 —«
method shuffle —append —exclude_similar

Windows
On the TOPP command line:

OpenSwathDecoyGenerator.exe —in OpenSWATH_SGS_AssaylLibrary.TraML —out <
OpenSWATH_SGS_AssaylLibrary_with_Decoys.TraML —min_transitions 3 —max_transitions 6 —«
method shuffle —append —exclude_similar

6.5 OpenSWATH KNIME

An example KNIME workflow for OpenSWATH is supplied in SSWorkflows (Figure 14). The
example dataset can be used for this workflow (filenames in brackets):

43

1. Open E3Workflows » 0penSWATH. zip in KNIME: [File)) Import KNIME Workflow... |

2. Select the normalized retention time (iRT) assay library in TraML format by double-
clicking on node [Input File)) iRT Assay Library|,
(E30penSWATH» assay» OpenSWATH_iRT_AssaylLibrary.TraML)

3. Selectthe SWATH MSdatain mzML format asinput by double-clickingon node
SWATH-MS files|

(E90penSWATH» data» split_napedro_L120420_010_SW-*.nf.pp.mzML)

4. Select the target peptide assay library in TraML format as input by double-clicking on
node {Input Files>> Assay Library],
(E30penSWATH» assay » OpenSWATH_SGS_AssaylLibrary.TraML)

5. Set the output destination by double-clicking on node |Output File,

6. Run the workflow.

The resulting output can be found at your selected path, which will be used as input for
mProphet. Execute the script on the Terminal (Linux or Mac) or cnd.exe (Windows) in &3
OpenSWATH» result:

R —slave —args bin_dir=../../../External_Tools/mProphet/ mquest=0penSWATH_output.csv workflow=«
LABEL_FREE num_xval=5 run_log=FALSE write_classifier=1 write_all pg=1 < ../../../+
External_Tools/mProphet/mProphet.R

The main output will be called
S30penSWATH» result»mProphet_all_peakgroups.xls
with statistical information available in
30penSWATH» result»mProphet.pdf.

Please note that due to the semi-supervised machine learning approach of mProphet
the results differ slightly when mProphet is executed several times.

44

Input Files

(@ce)
SWATH-MS files
Op C g or OpenSwathAnalyzer

G r L&
(J=L)] (Q=L)]
Node 1 Node 4
Input File OpexSwathRTNormglizer OpenSwathChrc E: tor

Q rés} h 53} -
(@=L} (=L}
iRT Assay Library Node 2 Node 3

OpenSwathFeatureXMLToTSV Output File

"

Input File
Q ’> (=)} (L)
Node 5 Node 9

Assay Library

Figure 14: OpenSWATH KNIME Workflow.

6.6 Example dataset

This sample dataset is part of the larger SWATH MS Gold Standard (SGS) dataset which is
described in the publication of Roest et al. [11]. It contains one of 90 SWATH MS runs with
significant data reduction (peak picking of the raw, profile data) to make file transfer and
working with it easier.

6.7 Real-life applications

SWATH-MS datasets are huge, several gigabyte per run. Especially when complex samples

in combination with large assay libraries are analyzed, the TOPP tool based workflow re-
quires much computationalresources. For thisreason, anintegrated tool (OpenSwathWorkflow)
combining all the steps in a single executable has been developed. Itis shipped with Open-
MS/develop and will be shipped with OpenMS 1.12. Instructions on how to use this tool
can be found on http://www.openswath.org.

45

http://www.openswath.org

7 Anintroduction to pyOpenMS

7.1 Introduction

pyOpenMS provides Python bindings for a large part of the OpenMS library for mass spec-
trometry based proteomics. It thus provides access to a feature-rich, open-source algo-
rithm library for mass-spectrometry based proteomics analysis. These Python bindings
allow raw access to the data-structures and algorithms implemented in OpenMS, specif-
ically those for file access (mzXML, mzML, TraML, mzldentML among others), basic signal
processing (smoothing, filtering, de-isotoping and peak-picking) and complex data analysis
(including label-free, SILAC, iTRAQ and SWATH analysis tools).

pyOpenMS is integrated into OpenMS starting from version 1.11. This tutorial is ad-
dressed to people already familiar with Python. If you are new to Python, we suggest to
start with a Python tutorial (http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_
for_Python_2.6).

7.2 Installation

7.2.1 Windows
1. Install Python 2.7 (http://www.python.org/download/)
2. Install NumPy (http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)
3. Install setuptools (https://pypi.python.org/pypi/setuptools)

4. On the command line:

easy_install pyopenms

7.2.2 MacOSX10.8

1. On the Terminal:

46

http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
http://www.python.org/download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://pypi.python.org/pypi/setuptools

sudo easy_install pyopenms

7.2.3 Linux
1. Install Python 2.6 or 2.7 (Debian: python-dev, RedHat: python-devel)
2. Install NumPy (Debian / RedHat: python-numpy)
3. Install setuptools (Debian / RedHat: python-setuptools)

4. On the Terminal:

easy_install pyopenms

7.3 Build instructions

Instructions on how to build pyOpenMS can be found online (http://ftp.mi.fu-berlin.
de/OpenMS/documentation/html/pyOpenMS.html).

7.4 Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV

The first tool that you are going to re-implement is a TOPP tool called OpenSwathFea-
tureXMLToTSV. Take a look at the help of the tool:

OpenSwathFeatureXMLToTSV — Converts a featureXML to a mProphet tsv.
Version: 1.11.0 Aug 16 2013, 23:41:21, Revision: 11695

Usage:
OpenSwathFeatureXMLToTSV <options>

Options (mandatory options marked with 'x'):

—in <files>% Input files separated by blank (valid format
s: 'featureXxML')

—tr <file>x TraML transition file (valid formats: 'traML
")

—out <file>x Tsv output file (mProphet compatible) (valid

formats: 'csv')

47

http://ftp.mi.fu-berlin.de/OpenMS/documentation/html/pyOpenMS.html
http://ftp.mi.fu-berlin.de/OpenMS/documentation/html/pyOpenMS.html

—short_format Whether to write short (one peptide per line
) or long format (one transition per line).

—best_scoring_peptide <varname> If only the best scoring feature per peptide
should be printed, give the variable name

Common TOPP options:

—ini <file> Use the given TOPP INI file

—threads <n> Sets the number of threads allowed to be
used by the TOPP tool (default: '1')

—write_ini <file> Writes the default configuration file

—help Shows options

—helphelp Shows all options (including advanced)

OpenSwathFeatureXMLToTSV converts a featureXML file to a tab-separated value text
file. This example will teach you how to use pyOpenMS in combination with Python to
implement such a tool very quickly.

7.4.1 Basics

The First task that your tool needs to be able to do is to read the parameters from the
command line and provide a main routine. This is all standard Python and no pyOpenMS is
needed so far:

#!/usr/bin/env python
import sys

def main(options):

test parameter handling
print options.infile, options.traml_in, options.outfile

def handle_args():
import argparse

usage = ""

usage += "\nOpenSwathFeatureXMLToTSV — Converts a featureXML to a mProphet tsv."

parser = argparse.ArgumentParser(description = usage)

parser.add_argument('—in', dest="infile", help = 'An input file containing features [«
featurexML] ")

parser.add_argument("—tr", dest="traml_in", help="An input file containing the transitions [«
TraML]")

parser.add_argument("—out", dest="outfile", help="Output mProphet TSV file [tsv]")

args = parser.parse_args(sys.argv([1:])

48

return args

if __name__ == '__main__ ':
options = handle_args()
main(options)

Execute this code in the example script

. /pyOpenMS/OpenSwathFeatureXMLToTSV_basics.py

python OpenSwathFeatureXMLToTSV_basics.py —help
usage: OpenSwathFeatureXMLToTSV_basics.py [-h] [—in INFILE] [——tr TRAML_IN]
[——out OUTFILE]

OpenSwathFeatureXMLToTSV — Converts a featureXML to a mProphet tsv.

optional arguments:
—h, —help show this help message and exit
—in INFILE An input file containing features [featureXML]
—tr TRAML_IN An input file containing the transitions [TraML]
—out OUTFILE Output mProphet TSV file [tsv]

python OpenSwathFeatureXMLToTSV_basics.py —in data/example.featureXML —tr assay/<«
OpenSWATH_SGS_AssaylLibrary.TraML —out example.tsv
data/example. featureXML assay/OpenSWATH_SGS_AssaylLibrary.TraML example.tsv

The parameters are being read from the command line by the function handle_args()
and given to the main() function of the script, which prints the different variables.
7.4.2 Loading data structures with pyOpenMS

Now we're going to import the pyOpenMS module with import pyopenms in the header of
the script and load the featureXML:

#!/usr/bin/env python
import pyopenms
import sys

def main(options):

49

load featurexML

features = pyopenms.FeatureMap()

fh = pyopenms.FileHandler()
fh.loadFeatures(options.infile, features)

keys = []
features[0] .getKeys (keys)
print keys
def handle_args():
import argparse
usage = ""
usage += "\nOpenSwathFeatureXMLToTSV — Converts a featureXML to a mProphet tsv."
parser = argparse.ArgumentParser(description = usage)
parser.add_argument('—in', dest="infile", help = 'An input file containing features [«
featurexML] ")
parser.add_argument("—tr", dest="traml_in", help="An input file containing the transitions [«
TraML]")
parser.add_argument("—out", dest="outfile", help="Output mProphet TSV file [tsv]")
args = parser.parse_args(sys.argv[1:])
return args
if __name__ == '__main__':

options = handle_args()
main(options)

The function pyopenms.FeatureMap() initializes an OpenMS FeatureMap data struc-

ture. The function pyopenms.FileHandler() prepares a filehandler with the variable name
fh and fh.loadFeatures(options.infile, features) takes the filename and imports the fea-
tureXML into the FeatureMap data structure.

In the next step, we're accessing the keys using the function getKeys() and printing

them to stdout:

python OpenSwathFeatureXMLToTSV_datastructuresl.py —in data/example.featureXML —tr assay/<«

OpenSWATH_SGS_AssaylLibrary.TraML —out example.tsv

50

['PeptideRef', 'leftWidth', 'rightwWidth', 'total_xic', 'peak_apices_sum', 'var_xcorr_coelution', <
'var_xcorr_coelution_weighted ', 'var_xcorr_shape', 'var_xcorr_shape_weighted',6 '«
var_library_corr', 'var_library_rmsd', 'var_library_manhattan', 'var_library_dotprod', '+«
delta_rt', 'assay_rt', 'norm_RT', 'rt_score', 'var_norm_rt_score', 'var_intensity_score', '+«
nr_peaks', 'sn_ratio', 'var_log_sn_score', 'var_elution_model_fit_score', '+«
xx_1lda_prelim_score', 'var_isotope_correlation_score', 'var_isotope_overlap_score', '«
var_massdev_score', 'var_massdev_score_weighted', 'var_bseries_score', 'var_yseries_score', <«
'var_dotprod_score', 'var_manhatt_score', 'main_var_xx_swath_prelim_score', 'PrecursorMz', '«
xx_swath_prelim_score']

In the next task, please load the TraML into an OpenMS TargetedExperiment data struc-
ture, analogously to the featureXML. You might want to consult the pyOpenMS manual
(http://proteomics.ethz.ch/pyOpenMS_Manual.pdf), which providesan overview of all func-
tionality. If you have trouble reading the TraML, search for TraMLFile(). If you can’t solve
the task, take a look at OpenSwathFeatureXMLToTSV_datastructures?2.py

7.4.3 Converting data in the featureXML to a TSV

Now that all data structures are populated, we need to access the data using the provided
API and store it in something that is directly accessible from Python. We prepared two
functions for you: get_header() & convert_to_row():

def get_header(features):
keys = []
features[0] .getKeys (keys)
header = [
"transition_group_id",
"run_id",
"filename",
R,
DG,
"Sequence" ,
"FullPeptideName",
"Charge",
"m/z",
"Intensity",
"ProteinName",
"decoy"]
header.extend(keys)
return header

get_header() takes asinput a FeatureMap and uses the getKeys() function that you have
seen before to extend a predefined header list based on the contents of the FeatureMap.

51

http://proteomics.ethz.ch/pyOpenMS_Manual.pdf

The return variable is a native Python list.

def convert_to_row(first, targ, run_id, keys, filename):
peptide_ref = first.getMetaValue("PeptideRef")
pep = targ.getPeptideByRef (peptide_ref)
full_peptide_name = "NA"
if (pep.metaValueExists("full_peptide_name")):
full_peptide_name = pep.getMetaValue("full_peptide_name")

decoy = "0"
peptidetransitions = [t for t in targ.getTransitions() if t.getPeptideRef() == peptide_ref]
if len(peptidetransitions) > 0:
if peptidetransitions[@].getDecoyTransitionType() == pyopenms.DecoyTransitionType().DECOY+>

decoy = "1"

elif peptidetransitions[@].getDecoyTransitionType() == pyopenms.DecoyTransitionType().<«
TARGET:
decoy = "0"

protein_name = "NA"
if len(pep.protein_refs) > 0:
protein_name = pep.protein_refs[0]

row = [
first.getMetaValue("PeptideRef"),
run_id,
filename,
first.getRT(),
first.getUniquelId(),
pep.sequence,
full_peptide_name,
pep.getChargeState(),
first.getMetaValue("PrecursorMz"),
first.getIntensity(),
protein_name,
decoy

for k in keys:
row.append(first.getMetaValue(k))

return row

convert_to_row() is a bit more complicated and takes as first input a Feature OpenMS
class. From this, we access stored values using the provided functions (getRT(), getU-
nigueld(), etc). It further takes a TargetedExperiment to accessinformation from the TraML

52

with the provided routines. This data is then stored in a standard Python list with the vari-
able name row and returned.

7.4.4 Putting things together

Now put these two functions into the header of
OpenSwathFeatureXMLToTSV_datastructures2.py.

Your final goalis to implement the conversion functionality into the main function using
get_header() & convert_to_row() and to write a TSV using the standard csv module from
Python http://docs.python.org/2/1library/csv.html. Compare the resultswith . /result/ex-
ample.tsv. Are the results identical? Congratulations to your first pyOpenMS tool!

Hint: If you struggle at any point, take a look at OpenSwathFeatureXMLToTSV_solution.py.

7.4.5 Bonus task

Task
@ Implement all other 142 TOPP tools using pyOpenMS.

53

http://docs.python.org/2/library/csv.html

References

[1]
[2]

OpenMS, OpenMS home page [online]. 6

M. Sturm, A. Bertsch, C. Gropl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer,
O. Schulz-Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher, OpenMS - an open-
source software framework for mass spectrometry., BMC bioinformatics 9(1) (2008),
do1:10.1186/1471-2105-9-163. 6, 40

O. Kohlbacher, K. Reinert, C. Gropl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and
M. Sturm, TOPP-the OpenMS proteomics pipeline., Bioinformatics 23(2) (Jan. 2007).
6, 40

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl, P. Ohl, C. Sieb, K. Thiel,
and B. Wiswedel, KNIME: The Konstanz Information Miner, in Studies in Classification,
Data Analysis, and Knowledge Organization (GfKL 2007), Springer, 2007. 6

M. Sturm and O. Kohlbacher, TOPPView: An Open-Source Viewer for Mass Spec-
trometry Data, Journal of proteome research 8(7), 3760-3763 (July 2009), doti:
10.1021/pr900171m. 6

L.Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard, X. Yang, W. Shi,
and S. H. Bryant, Open mass spectrometry search algorithm, Journal of Proteome
Research 3(5), 958-964 (2004). 18

D. S. Wishart, D. Tzur, C. Knox, et al., HMDB: the Human Metabolome Database, Nu-
cleic Acids Res 35(Database issue), D521-6 (Jan 2007), doi:10.1093/nar/gk1923. 33

D. S. Wishart, C. Knox, A. C. Guo, et al., HMDB: a knowledgebase for the human
metabolome, Nucleic Acids Res 37(Database issue), D603-10 (Jan 2009), doti:
10.1093/nar/gkn810. 33

D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, et al., HMDB 3.0-The Human
Metabolome Database in 2013, Nucleic Acids Res 41(Database issue), D801-7 (Jan
2013), doi:10.1093/nar/gks1065. 33

54

http://www.OpenMS.de
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://view.ncbi.nlm.nih.gov/pubmed/17237091
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://pubs.acs.org/doi/abs/10.1021/pr0499491
http://dx.doi.org/10.1093/nar/gkl923
http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gks1065

[10]

[13]

J. Griss, A. R. Jones, T. Sachsenberg, M. Walzer, L. Gatto, J. Hartler, G. G. Thallinger,
R. M. Salek, C. Steinbeck, N. Neuhauser, J. Cox, S. Neumann, J. Fan, F. Reisinger, Q.-W.
Xu, N. Del Toro, Y. Perez-Riverol, F. Ghali, N. Bandeira, |. Xenarios, O. Kohlbacher, J. A.
Vizcaino, and H. Hermjakob, The mzTab Data Exchange Format: communicating MS-
based proteomics and metabolomics experimental results to a wider audience, Mol
Cell Proteomics (Jun 2014), do1:10.1074/mcp.0113.036681. 34

H. L. Rost, G. Rosenberger, P. Navarro, L. Gillet, S. M. Miladinovic, O. T. Schubert,
W. Wolski, B. C. Collins, J. Malmstrom, L. Malmstrém, and R. Aebersold, OpenSWATH
enables automated, targeted analysis of data-independent acquisition MS data, Na-
ture Biotechnology 32(3), 219-223 (Mar. 2014). 40, 45

L. C. Gillet, P. Navarro, S. Tate, H. Rost, N. Selevsek, L. Reiter, R. Bonner, and R. Aeber-
sold, Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent
Acquisition: A New Concept for Consistent and Accurate Proteome Analysis., Molec-
ular & Cellular Proteomics 11(6) (June 2012), doi:10.1074/mcp.0111.016717. 40

A. Bertsch, C. Gropl, K. Reinert, and O. Kohlbacher, OpenMS and TOPP: open source
software for LC-MS data analysis., Methods in molecular biology (Clifton, N.J.) 696,
353-367 (2011), doi:10.1007/978-1-60761-987-1_23. 40

L. Reiter, O. Rinner, P. Picotti, R. Huttenhain, M. Beck, M.-Y. Brusniak, M. O. Hengartner,
and R. Aebersold, mProphet: automated data processing and statistical validation
for large-scale SRM experiments, Nature Methods 8(5), 430-435 (May 2011), doti:
10.1038/nmeth.1584. 40

E. W. Deutsch, M. Chambers, S. Neumann, F. Levander, P.-A. Binz, J. Shofstahl, D. S.
Campbell, L. Mendoza, D. Ovelleiro, K. Helsens, L. Martens, R. Aebersold, R. L. Moritz,
and M.-Y. Brusniak, TraML—A Standard Format for Exchange of Selected Reaction
Monitoring Transition Lists, Molecular & Cellular Proteomics 11(4) (Apr. 2012), doi:
10.1074/mcp.R111.015040. 41

C. Escher, L. Reiter, B. MacLean, R. Ossola, F. Herzog, J. Chilton, M. J. MacCoss, and
O. Rinner, Using iRT, a normalized retention time for more targeted measurement of
peptides., Proteomics 12(8), 1111-1121 (Apr. 2012), doi:10.1002/pmic.201100463.
41

55

http://dx.doi.org/10.1074/mcp.O113.036681
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1002/pmic.201100463
http://dx.doi.org/10.1002/pmic.201100463
http://dx.doi.org/10.1002/pmic.201100463

	General remarks
	Getting started
	Data conversion
	Data visualization using TOPPView
	Introduction to KNIME / OpenMS
	Install OpenMS using KNIME
	KNIME Concepts
	Overview of the graphical user interface
	Creating workflows
	Sharing workflows
	Duplicating workflows
	A minimal workflow

	Label-free quantification
	Introduction
	Peptide Identification
	Bonus task: identification using several search engines

	Quantification
	Combining quantitative information across several label-free experiments
	Bonus task: data analysis in KNIME

	Quality Control
	Introduction
	QC-CV
	Single run QC
	ID ratio
	Total Ion Current
	Mass Accuracy
	Fractional Mass
	Final preparations

	Inspect the quality reports

	Metabolomics
	Introduction
	Quantifying metabolites across several experiments
	Identifying metabolites in LC-MS/MS samples
	Convert your data into a KNIME table
	Bonus task: Visualising data

	Downstream data analysis and reporting
	Data preparation ID
	Data preparation Quant
	Statistical analysis
	Data preparation for Reporting

	OpenSWATH
	Introduction
	Installation of OpenSWATH
	Installation of mProphet
	Generating the Assay Library
	Generating TraML from transition lists
	Appending decoys to a TraML

	OpenSWATH KNIME
	Example dataset
	Real-life applications

	An introduction to pyOpenMS
	Introduction
	Installation
	Windows
	Mac OS X 10.8
	Linux

	Build instructions
	Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV
	Basics
	Loading data structures with pyOpenMS
	Converting data in the featureXML to a TSV
	Putting things together
	Bonus task

