
Evolutionary distances

t = 0 C C A T G C G
↓

t = 1 C C A C G C G
↓

t = 2 C C G C G C G
↓

t = 3 C C C C G C G
↓

t = 4 C C C G G C G
↓

t = 5 C A C G G C G
↓

t = 6 G A C G G C G
↓

t = 7 G A C T G C G
↓

t = 8 G A C T G C A
↓

t = 9 A A C T G C A
↓

t = 10 A A T C G C A



Evolutionary distances, cont’d

• We are given a multiple alignment and want to obtain pairwise evo-

lutionary distances

• With u as the number of mismatches in an alignment of length n, the

Hamming distance per 100 sites is

D(u, n) = 100
u

n

• The distance D does not take multiple substitutions into account. As

a consequence, pairwise distances are not additivie.

• For any number of mismatches u and alignment lengths n, we have

0 <= D <= 100

. For example

D(u = 0, n = 100) = 0 and D(u = 75, n = 100) = 75



Evolutionary distances, cont’d

• Pairwise evolutionary distances d(u, n) are meant to scale in units of

substitutions (per 100 sites) that most likely have occured on the

evolutionary paths.

• If we assume (as in the Jukes-Cantor model, see below)

i) that sequence positions are i.i.d. (independently identically dis-

tributed)

ii) that nucleotides are uniformly distributed and independently sub-

stituted such that the probabilities for nucleotide substitutions are

all the same and do not depend on the particular nucleotides

we require that

d(u = 0, n = 100) = 0 and d(u = 75, n = 100) =∞

(the latter follows from the requirement that the evolutionary distance

for two random sequences is d =∞)



Markov chains (“time-discrete Markov
processes”)

1. The states are A, C, G, T

2. A starting distribution of states ρ0 =

(ρA, ρC, ρG, ρT )

3. Transition probabilites in one “time step” be-

tween states Pij = Pr(j|i)

A C

G T

State probabilities depend only on the previous state and not on the past

of the chain (Markov property). If transition probabilities don’t change in

time (homogeneity) the probability of a sequence x = (x1, ..., xL) is

Pr(x) = ρx1

L
∏

i=2

Pr(xi|xi−1)

Transition probabilities for n steps are obtained from the n-th power of

the stochastic one-step transition matrix P , from Pn.



The Markov model of sequence evolution

Sequence evolution is modeled by a (time-continuous) Markov process

that acts independently on the sites of the sequence.

Xt1 = A T C G C · · ·
↓ ↓ ↓ ↓ ↓

Xt2 = G T C A G · · ·
↓ ↓ ↓ ↓ ↓

Xt3 = G T C A C · · ·
↓ ↓ ↓ ↓ ↓

Xt4 = A G C A G · · ·

A Markov process is a sequence of random variables (Xt)t≥0 given by a

triple
(

A, ρ0, Q
)

, where A = {1, ..., n} is the set of states (nucleotides or

amino acid residues) (Xt) takes, ρ0 is the initial probability distribution

of states (ρ0
i = Pr[X0 = i]) and the rate matrix Q as a n× n matrix with

substitution rates (something like transition probabilities for infinitesimal

small time steps) between states.



The Markov model of sequence evolution,
cont’d

• Markov property (the process is memoryless):

Pr[X(tn) = s|X(t1) = i1, X(t2) = i2, ..., X(tn−1) = in−1]

= Pr[X(tn) = s|X(tn−1) = in−1]

• Homogeneity:

Transition probabilities only depend on the time interval:

Pij(t) = Pr[Xt+s = j|Xs = i] = Pr[Xt = j|X0 = i]

• The time t of the Markov process is measured in units of substitutions

• The transition probablity Pij(t) is the probability that state i changes

into state j in time t

• We think of the distribution ρ(t) as a row vector. The evolution of

the distribution of states at time s in time t is given by

ρ(s)P(t) = ρ(s + t)



The Markov model of sequence evolution,
cont’d

• Stationary distribution:

π is the stationary distribution of the process, if π doesn’t change in

time:

πj =
∑

i∈A

πiPij(t) for all j

πP(t) = π

We say that the process is in equilibrium if the distribution of the

process is the stationary distribution π.

π exists if any state can be reached by any other state.



The transition probability matrix

For nucleotides, the simplest model is the Jukes–

Cantor–model (1969). The set of states comprises

the nucleotides (A = {1,2,3,4}). The stationary

distribution π of nucleotides is the uniform distri-

bution (π = (1
4, 1

4, 1
4, 1

4)) and the probabilities that

any nucleotide is substituted by another any other

nucleotide are equal.

Thus, the transition probability matrix of the

Jukes–Cantor model has the form

at at

at

at

at

at

1−3at 1−3at

1−3at1−3at

A C

G T

P(t) =











1− 3at at at at
at 1− 3at at at
at at 1− 3at at
at at at 1− 3at













The transition probability matrix, cont’d

The transition probability matrix P(t) is a stochastic matrix and has the

following properties:

• P(0) = I, I - identity matrix,

• Pij(t) ≥ 0 and
∑

j Pij(t) = 1,

• P(s + t) = P(s)P(t)

The latter equation is called Chapman–Kolmogorov equation. E.g. think

of A = {1,2,3,4} and the process being in state 1 reaching state t in

time s + t. The transition probability P14(s + t) is

Pr[Xs+t = 4|X0 = 1] = Pr[Xs = 1|X0 = 1] · Pr[Xs+t = 4|Xs = 1]

+ Pr[Xs = 2|X0 = 1] · Pr[Xs+t = 4|Xs = 2]

+ Pr[Xs = 3|X0 = 1] · Pr[Xs+t = 4|Xs = 3]

+ Pr[Xs = 4|X0 = 1] · Pr[Xs+t = 4|Xs = 4]

=
∑

k∈AP1k(s)Pk4(t)



Maximum Likelihood and coin tossing

Assume, we have flipped a coin 10 times and got 7 times its head and 3

times its tail. We want to estimate the probability Prob(head), that the

head shows up when the coin is flipped?

The likelihood L(p) is the probability to observe one outcome (of many

possible outcomes) of a random experiment (one data set) under the

probabibilistic model with its model parameter p.

L(p) = Pr(data|p) = p7(1− p)3

We think of the likelihood as a function depending on the model param-

eters. Note that the sum or the integral over the parameter space is not

1!

p̂ = Prob(head) is determined as the p where L assumes its maximum.

The variance of the estimate depends on the sample size and can be

estimated from the likelihood curvature. If the data was generated under

the model, the ML estimate of the parameters yields exact or true values

for infinite sample sizes.



Evolutionary distances with Maximum
Likelihood

We think of the observed alignment D as the outcome of the Markovian

evolution.

Consider the following alignment D:
A G C
A T A

AGC

t1 t2

ATA
We assume that the process is in equilibrium.

The likelihood to observe the alignment D (the data) with distance t =

(t1 + t2) given the Markov model M then is

Pr(D|t,M) =
∑

i∈A

πiPiA(t1)PiA(t2)·
∑

i∈A

πiPiG(t1)PiT (t2)·
∑

i∈A

πiPiC(t1)PiA(t2)



Evolutionary distances with Maximum
Likelihood, cont’d

The Markov process is called reversible, if the evolution of state i into

state j in time t is modelled by the same process as the evolution of state

i into state j in time t:

πiPij(t) = πjPji(t) for all i, j, t

(detailed balance equations)

A C

We assume the time-reversible Jukes-Cantor model and apply the

Chapman-Kolmogorov equations:

Pr(D|t,M) = πAPAA(t) · πGPGT (t) · πCPCA(t)

= πAPAA(t) · πTPTG(t) · πAPAC(t)

If the process is reversible and if we are given a pairwise alignment, we

are ignorant about the location of the root node.



Evolutionary distances with Maximum
Likelihood, cont’d

Consider Pr(D|t,M) as likelihood function depending on the distance t as

model parameter:

logL(t) = logPr(D|t,M)

The evolutionary distance is estimated as distance t̂ where the likelihood

function assumes its maximum.

If sequences have evolved according to the evolutionary model (M, t), and

if we have infinitely many samples (alignment columns) of the outcome

of this evolution, the evolutionary distance can be exactly reestimated by

Maximum Likelihood (ML), i.e. the ML distance estimator is consistent.

For finite sample sizes, ML estimates t̂ are normally distributed around

the ’true’ value for t.

We have to evaluate the likelihood function and thus the transition prob-

abilities for different times or distances t. This is achieved by means of

the rate matrix...



The rate matrix

The rate matrix Q of a time-continuous Markov process provides an in-

finitesimal description of the process.

We assume that the probability transition matrix P(t) of a time continuous

Markov process is continuous and differentiable at any t > 0. I.e. the limit

Q := lim
tց0

P(t)− I

t

exists. Q is known as the rate matrix or the generator of the Markov

chain. For very small time periods h > 0, transition probabilities are

approximated by

P(h) ≈ I + hQ

Pij(h) ≈ Qij · h, i 6= j.

From the last equation we see, that the entries of Q may be interpreted

as substitution rate.



The rate matrix, cont’d

From the Chapman-Kolmogorov equation we get

d

dt
P(t) = lim

hց0

P(t + h)− P(t)

h

= lim
hց0

P(t)P(h) − P(t)I

h

= P(t) lim
hց0

P(h)− P(0)

h
d

dt
P(t) = P(t)Q

Under the initial condition P(0) = I the differential equation can be solved

and yields (as in the one–dimensional case)

P(t) = exp(tQ) =
∞
∑

k=0

Qktk

k!
.

Transition probabilities for any t > 0 are computed from the matrix Q.



The rate matrix, cont’d

Recall, that for very small h we have P(h) ≈ I + hQ.

Q has the following properties:

• Qij ≥ 0 for i 6= j

• Qij ≥ 0, i 6= j ⇒ Qii ≤ 0

•
∑

j Qij = 0, Qii = −
∑

j 6=i Qij

Further,

• π is stationary distribution if πQ = 0

• the process is reversible, if πiQij = πjQji for all i, j



The rate matrix, cont’d

The rate matrix of the Jukes-Cantor model is

Q =











−3α α α α
α −3α α α
α α −3α α
α α α −3α











.

where α ≥ 0.

Due to the simple structure of Q, exp(tQ) can be calculated analytically.

The transition probability matrix is

P(t) =











1− 3at at at at
at 1− 3at at at
at at 1− 3at at
at at at 1− 3at











,

where

at =
1− exp(−4αt)

4



The rate matrix, cont’d

If we assume the stationary distribution, Q summarizes all model param-

eters of the Markov process, since πQ = 0. Clearly, Q can be multiplied

with a factor and the distribution π doesn’t change. In other words: The

model parameters hold substitution rates. And rates hold the information

how many substitutions per time unit one expects.

The rate matrix can be calibrated to PAM (percent accepted mutations)–

units. 1 PAM is the time (or evolutionary distance) where one substitution

event per 100 sites is expected to have occured.

Given Q, one expects E =
∑

i πi
∑

j 6=i Qij = −
∑

i πiQii substitution events

per time unit.

The Jukes–Cantor rate matrix Q is calibrated to PAM-units by setting

E = 1
100 ⇔ −4 · 14 · −3α = 1

100 ⇔ α = 1
300.



Evolutionary distances with Maximum
Likelihood

Again, consider the log likelihood of the alignment D:
A G C
A T A

We had

logL(t) = log(πAPAA(t)) + log(πGPGL(t)) + log(πCPCA(t))

with the Jukes-Cantor model:

logL(t) = log

(

1

4
·
(

1−
3

4
· (1− exp(

−4

300
t))

)

)

+ 2 · log
(

1

4
·
1− exp( −4

300 t)

4

)



Evolutionary distances with Maximum
Likelihood, cont’d

The log likelihood functions for the single alignment columns and JC69:

0 50 100 150 200 250 300 350 400 450 500
time t in PAM units
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log L for a site with a match
log L for a site with a mismatch



Evolutionary distances with Maximum
Likelihood, cont’d

0 50 100 150 200 250 300 350 400 450 500
time t in PAM units

-10
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d log L for an alignment 
with one match 
and two mismatches 

The Maximum Likelihood estimate t̂ = 165 PAM is the value for t where

where logL(t) is maximal. The variance of the estimate is huge because

i) the small sample size, ii) the large distance. Variances can be computed

from the second derivative of logL(t̂).



The Jukes-Cantor correction

The Hamming distance D = 100·u
n (u-mismatches, n- sequence length) for

the distance between two DNA sequences ignores the putative occurence

of multiple substitutions. The Jukes-Cantor correction d provides a for-

mula for the evolutionary distance d of two DNA sequences, i.e. d(u, n)

holds the number of substitutions which are expected to have occured

per 100 sites.

The probability p to observe that a nucleotide is not substituted after

time t is

p =
∑

i πiPii(t) = 4 · 14(1− 3at) = 1− 3
4(1− exp(−4αt)) = 1+3exp(−4αt)

4

There are u mismatches among n sites. That is, we observe p = 1 − u
n.

Calibration to PAM–units and setting t = d yields

1−
u

n
=

1 + 3exp(−4d/300)

4



Jukes–Cantor correction, cont’d

d = −
300

4
ln

(

1−
4u

3n

)

PAM
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linear estimator

If u
n ≥ 0.75, d is not defined.



Maximum Likelihood Trees

Consider one site Ds of an alignment with the states A,C,C,T ∈ A. We

consider a particular tree topology T with edge lengths ~t = (t1, ..., t5) and

label the leaves with the states of the alignment.

2t 4t

3t
5t

1t

A

C
C

G

u

T

v

We want to compute the likelihood to observe the states under this tree

(T,~t) and the Markov model Q. Reversibility implies that the likelihood

does not depend on the position of a root node.



Maximum Likelihood Trees, cont’d

2t 4t

3t
5t

1t

A

C
C

G

u

T

v

We choose node u as root node. First assume that we know states at

internal nodes u and v and that both of them are C. Then

L(T,~t, Q | Ds, [C, C]) = πCPCC(t1)PCA(t2)PCC(t5)PCC(t3)PCG(t4)

Because we do not know states at internal nodes

L(T,~t, Q | Ds) =
∑

i∈A

πiPiC(t1)PiA(t2)
∑

j∈A

Pij(t5)PjC(t3)PjG(t4)

Note that we have 4n summands for n internal nodes.



Maximum Likelihood Trees, cont’d

Recursive definition of the likelihood

We want to apply a dynamic programming strategy to compute the like-

lihood. The algorithm requires a rooted tree which is traversed from the

leaves to the root (as the Sankoff algorithm does).

Felsenstein (1981) defines the conditional likelihood

Lk(w)

as the likelihood of the subtree rooted at node w, given that node w has

state k ∈ A.

At a leaf node l we have

Lk(l) =

{

1 if the leaf has state k
0 else



Maximum Likelihood Trees, cont’d

For ease of illustration, we now insert a root node r at the internal edge

such that t5 = t6 + t7.

2t 4t

3t
5t

1t

1t 2t 3t 4t
A

C
C

G

u

T

v

C A C G

t t6 7

u v

r

The conditional likelihood at the node r is

Lk(r) =

(

∑

i∈APki(t6)Li(u)

)

·
(

∑

i∈APki(t7)Li(v)

)

r is already the root of the tree. Thus

L(T,~t, Q | Ds) =
∑

i∈A

πiLi(r)



Maximum Likelihood Trees, cont’d

Note that the number of summands in the likelihood function now is linear

in the number of internal nodes.

Sites are modeled independently of each other. The likelihood to observe

an alignment D with n sites is the product over the site likelihoods

L(T,~t, Q | D) =
n

∏

s=1

L(T,~t, Q | Ds)

Accordingly, the log likelihood is a sum over the site log likelihoods.

The likelihood L(T |D) to observe the alignment D under the tree T de-

pends on the model parameters, the edge lengths ~t and the rate matrix

elements in Q. In order to compute the likelihood one has to numerically

optimize over ~t and the rate matrix Q (for a rate matrix Q with more

parameters than the JC69-Q).

A Maximum Likelihood Tree T̂ is the one with the largest likelihood

L(T |D) among all possible tree topologies.



Heuristics to search the tree space

As discussed in the Maximum Parsimony section, the tree space is enor-

mous. If it’s not possible to examine all possible tree topologies, heuristic

methods to search the tree space are applied.

Start with some ’good’ tree (for example a Neighbor Joining tree) ...



Heuristics to search the tree space, cont’d

A fast and widely used heuristic to reduce the tree search space is Quartet

Puzzling (Strimmer, v. Haeseler 1996, see also http://www.tree-puzzle.

de/). The optimal tree for all subsets of sequences consisting only of four

sequences (=quartet) is computed. Subsequently, the quartet trees are

combined into a larger tree for all sequences.

Note that heuristics may get stuck in local optima of the likelihood land-

scape. The heuristic tree search procedure possibly should be repeated

several times (with different initializations or starting points).



Evolutionary Markov processes

Müller and Vingron (2000) have summarized the properties of a Markov

process being that describes the substitution process at a site of a molec-

ular sequence. A π–EMP has the following properties:

• (Xt) is time homogeneous.

Pij(t) = Prob[Xs+t = j|Xs = i] = Prob[Xt = j|X0 = i].

• (Xt) is stationary w.r.t. π.

πj =
∑

i πiPij(t), π = πP(t) ∀ t.

• (Xt) is reversible. πiPij(t) = πjPji(t).



Evolutionary Markov processes, cont’d

The assumptions of the Jukes-Cantor model for the evolution of a DNA

sequence are simplistic regarding substitution rates and the stationary

distribution.

The Kimura 2-parameter model takes into account that transitions (A↔

G and C ↔ T) are more frequently observed than transversions.

QK2P =











. α β β
α . β β
β β . α
β β α .











T

A G

C

α

α

β β
β

β

Normally, the ML estimate α̂ is larger than β̂.

The stationary distribution π is still the uniform distribution..



Evolutionary Markov processes, cont’d

The Felsenstein 81 model has one parameter for a substitution rate, but

three parameters for a non-uniform nucleotide distribution:

QF81 =











. πC πA πG
πT . πA πG
πT πC . πG
πT πC πA .











The GTR model is the most general time reversible model for nucleotide

sequence evolution with 9 parameters (if one does not care about cali-

bration 8 parameters)

QGTR =











. απC βπA γπG
απT . δπA ǫπG
βπT δπC . πG
γπT ǫπC πA .













Empirical models of amino acid evolution

The number of model parameters specifying transitions between amino

acids amounts to 209. This large number of parameters cannot be es-

timated from a single alignment of homologous amino acid sequences.

Therefore the empirical approach has become generally accepted. The

rate matrix is estimated by considering a large set of aligned sequences

from a database and the obtained fixed parameter set is supposed to

apply to other datasets.

Dayhoff proposed her pioneering and prominent model of amino acid

replacement in the 1970ies from which she derived the PAM family of

amino acid similarity matrices. The model is based on global alignments

of closely related sequences and the reconstruction of phylogenetic trees

followed by the estimation of ancestral sequences. Within the trees she

counts the frequency of residues and residue pairs which are used to set

up the 1-step transition matrix P(1) of a time-discrete Markov chain.

Transition matrices for larger evolutionary distances are obtained from

multiples of P(1), for example P(250) = P(1)250, that is by extrapolating

the observed replacement frequencies between close sequences.



Empirical models of amino acid evolution,
cont’d

Similarity scores in the PAM similarity matrices for pairs of amino acids

(i, j) are defined as a log likelihood ratio. For example, in the PAM250

similarity matrix,

Sij(250) := log
πiPij(250)

πiπj

The nominator is the probability that the residues have diverged from

an ancestral residue according to Dayhoff’s evolutionary model. The

denominator is the probability to observe two residues by chance. The

score is positive if the pair (i, j) frequently occurs in the alignments that

were used to estimate transition probabilities of the Markov model.

Other empirical models of amino acid evolution are the VT models of

Müller and Vingron (2000) and the WAG model of Wheelan and Goldman

(2001).



Maximum Likelihood vs. Maximum Parsimony

• Compared to parsimony, Markov models take all possible evolutions

into account (there is a small probability for each possible evolution)

• MP trees and ML trees are the same for well conserved alignments,

that is, if the probability of change is very small

• We can estimate the variance of real valued parameters with ML

• One can test evolutionary hypothesis with Likelihood Ratio Tests and

ask questions like:

– Did the sequences evolve like a molecular clock and can thus be

used to infer divergence times (in physical time units) ?

– Were the substitution rates different for different nucleotide pairs?

– Was some gene subject to positive selection in some lineage?



Summarizing probabilistic methods, keywords
to remember:

• Time-continuous Markov Models:

– stationary distribution

– reversibility (detailed balance eq.)

– rate matrix exponential

• Likelihood concept and Likelihood as objective function

• Jukes-Cantor correction

• Maximum Likelihood trees

• PAM matrices: the one-step transition probability matrix and the PAM

series of similarity matrices


