Prof. Dr. Knut Reinert, Prof. Dr. Alexander Bockmayr Annika Röhl

> January 16, 2015 Deadline: January 15, 2015, 11:30 am

Optimization

WS 2014/15

Exercises 3

1. (PORTA – Polyhedron Representation Transformation Algorithm)

Install the PORTA package and read the manpages (http://typo.zib.de/opt-long_projects/Software/Porta/).

Given the following ILP:

max	x_1	+	x_2	+	x_3	+	x_4
w.r.t.							
	x_1	+	x_2	+	x_3	\leq	2
	x_1	+	x_2	+	x_4	\leq	2
			x_3	+	x_4	\leq	1

 x_1, x_2, x_3, x_4 integral

- (a) Solve the LP relaxation with a solver.
- (b) Generate all feasible integral points using program *vint* (PORTA package).
- (c) Transform the point representation into the halfspace representation using program *traf* (PORTA package).
- (d) Solve the resulting linear program again with your lp solver.

2. Critical Mixed Cycles

Prove the following lemma (see lecture script):

A subset $T \subseteq E$ is a trace, if and only if G' = (V, T, H) does not contain a critical mixed cycle.

3. n-Queens-Problem

Write down an ILP for the so called *n*-queens-problem:

Place as much queens as possible on a $n \times n$ chess board such that no two queens interfere. Thus:

- In each vertical line ...
- In each horizontal line ...
- In each diagonal line ...

... is only one queen allowed