Prof. Dr. Knut Reinert, Dr. Yaron Goldstein, Annika Röhl

January 15, 2014

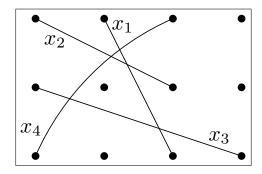
Optimization

WS 2013/14

Exercises 4

1. Branch and Cut (NIVEAU I)

Given the following alignment graph:



All edges have weight 1.

- (a) Try to solve the alignment problem by using branch-and-cut: Add mixed cycle inequalities to the corresponding (relaxed) LP. Can you reach an optimal solution for the ILP without branching?
- (b) Now use branching to solve the problem.
- (c) Instead of branching, just add the inequality

$$x_1 + x_2 + x_3 + x_4 \le 2$$

Can you solve the ILP now?

(d) Prove that the inequality in (c) is facet-defining.

2. Lagrangean Relaxation I (NIVEAU I)

Consider the following problem

- (a) Draw the corresponding polytope and determine graphically the optimal solution Z_{IP} of the original problem and Z_{LP} , the solution of the LP-relaxation.
- (b) Now apply lagrangean relaxation by relaxing the first inequality. Draw the polytope of the relaxed ILP. Determine the set X of feasible solutions for the relaxed problem.
- (c) The new objective function is then:

$$Z(P) = \min_{(x_1, x_2) \in X} 2x_1 - 3x_2 + p(-6 - 3x_1 + 4x_2)$$

Calculate $Z_D = \max_{p\geq 0} Z(p)$ and compare this value to Z_{IP} and Z_{LP} . (To obtain Z_D , draw the graphs of the function $f(p) = 2x_1 - 3x_2 + p(-6 - 3x_1 + 4x_2)$ for all $(x_1, x_2) \in X$.)

(d) repeat a-c for the objective functions $-x_1 + x_2$ and $-x_1 - x_2$ and compare Z_{LP} , Z_D , and Z_{IP} .

3. Lagrangean Relaxation II (NIVEAU I)

Prove Lemma 1 (see script page 4001) stating that (in case of a minimization problem) if $\lambda \geq 0$, then $Z(\lambda) \leq Z_{IP}$, where Z_{IP} is the optimal value of an original ILP and $Z(\lambda)$ is the optimal value of the relaxed problem for a given value of the Lagrangean multiplier λ .

4. Facets (NIVEAU I)

Proof the following two lemmas:

Lemma 1 Let G = (V, E, H, I) be a SEAG with n alignment edges and m interaction matches. Then

- $P_{\mathcal{R}}(G)$ is full-dimensional and
- the inequality $x_i \leq 1$ is facet-defining iff there is no $e_j \in E$ in conflict with e_i .

Lemma 2 Let G = (V, E, H, I) be a SEAG with n alignment edges and m interaction matches. Then

- The inequality $x_i \geq 0$ is facet-defining iff e_i is not contained in an interaction match.
- For each interaction match $m_{i,j}$ the inequality $x_{i,j} \geq 0$ is facet-defining.