Prof. Dr. Knut Reinert, Yaron Goldstein, Annika Röhl

December 18, 2013

Optimization

WS 2013/14

Exercises 2

1. Find the stoichiometric matrix of this network:

2. Find the stoichiometric matrix of the following network:
(Hint: The stoichiometric matrix only has rows corresponding to internal metabolites.)

- (a) Reaction 6 is allowed to carry a flux of at most 1. Maximize the production of metabolite M. Write down the LP-Form and the dual of it.
- (b) Reaction 6 is allowed to carry a flux of at most 1. Maximize the production of metabolite N. Write down the LP-Form and the dual of it.

Solve the problems of a) and b) with Gurobi (the primal as well as the dual) and analyse your results.

3. Niveau II

Let $S \in \mathbb{R}^{m \times n}$ be a stoichiometric matrix. If $v \in \mathbb{R}^n$ full fills Sv = 0, with $v_{\text{Irr}} \geq 0$, then v is a feasible flux vector. v_{Irr} denotes the set of irreversible reactions. Proof or disprove the following statement:

$$V = \{v_{\rm s} \mid Sv = 0, \ v_{\rm Irr} \geq 0, v_{\rm r} = 0, \ v_{\rm s} \geq 0\} \text{ is unbounded} \\ \Leftrightarrow P = \{v \in \mathbb{R}^n \mid Sv = 0, \ v_{\rm Irr} \geq 0, v_{\rm r} = 0, v_{\rm s} \geq 1\} \neq \emptyset$$

4. Consider the linear program $\max\{c^T v \mid Av \leq b\}$, where

$$A = \begin{pmatrix} -1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad c = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 42 \end{pmatrix}$$

 $A = \begin{pmatrix} -1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}, c = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 42 \end{pmatrix}.$ Is $v = \begin{pmatrix} -5 \\ 3 \\ 2 \\ 1 \end{pmatrix}$ a feasible basic solution for the basis $I = \{1, 2, 3, 4\}$? And if so, is it

an optimal solution? Proof your results with the help of the theory for the simplex algorithm.