Prof. Dr. Alexander Bockmayr, Prof. Dr. Knut Reinert, Sandro Andreotti

January 28, 2013

Optimization

WS 2012/13

Exercises 5

1. Lagrangean Relaxation I (NIVEAU I)

Consider the following problem

min
$$2x_1 - 3x_2$$

w.r.t. $3x_1 - 4x_2 \ge -6$
 $-x_1 + x_2 \le 2$
 $6x_1 + 2x_2 \ge 3$
 $6x_1 + x_2 \le 15$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

- (a) Draw the corresponding polytope and determine graphically the optimal solution Z_{IP} of the original problem and Z_{LP} , the solution of the LP-relaxation.
- (b) Now apply lagrangean relaxation by relaxing the first inequality. Draw the polytope of the relaxed ILP. Determine the set X of feasible solutions for the relaxed problem.
- (c) The new objective function is then:

$$Z(P) = \min_{(x_1, x_2) \in X} 2x_1 - 3x_2 + p(-6 - 3x_1 + 4x_2)$$

.

Calculate $Z_D = \max_{p \geq 0} Z(p)$ and compare this value to Z_{IP} and Z_{LP} . (To obtain Z_D , draw the graphs of the function $f(p) = 2x_1 - 3x_2 + p(-6 - 3x_1 + 4x_2)$ for all $(x_1, x_2) \in X$.)

(d) repeat a-c for the objective functions $-x_1 + x_2$ and $-x_1 - x_2$ and compare Z_{LP} , Z_D , and Z_{IP} .

2. Lagrangean Relaxation II (NIVEAU I)

Prove Lemma 1 (see script page 4001) stating that (in case of a minimization problem) if $\lambda \geq 0$, then $Z(\lambda) \leq Z_{IP}$, where Z_{IP} is the optimal value of an original ILP and $Z(\lambda)$ is the optimal value of the relaxed problem for a given value of the Lagrangean multiplier λ .

3. Inverse Queens Problem (NIVEAU I)

The *inverse queens problem* consists in placing n queens on a $n \times n$ chess board, one queen per row, such that each pair is either in the same column or in the same diagonal.

- (a) Model the problem as a constraint satisfaction problem.
- (b) Solve the problem for n = 4 by
 - forward checking
 - partial lookahead

assuming that the first queen is placed in column 2.

4. Task Scheduling (NIVEAU I)

Suppose we have a set of activities, each with a specified duration. There are precedence constraints between the activities, such that if task A precedes task B, then task B cannot start before task A ends.

Task	Duration	Precedes
A	3	В,С
В	2	D
С	4	D
D	2	

- (a) Model the problem as a constraint satisfaction problem.
- (b) Add two artificial tasks *Start* and *End* to model the beginning and the end of the project.
- (c) Apply arc consistency to reduce the domains of the variables.
- (d) What further reduction can be obtained by fixing the end of the project to the minimum possible value?