Prof. Dr. Alexander Bockmayr, Prof. Dr. Knut Reinert, Sandro Andreotti

January 9, 2013

Optimization

WS 2012/13

Exercises 3

1. (PORTA - Polyhedron Representation Transformation Algorithm)

Install the PORTA package and read the manpages (http://typo.zib.de/opt-long_ projects/Software/Porta/).
Given the following ILP:

$$
\begin{array}{ll}
\max & x_{1}+x_{2}+x_{3}+x_{4} \\
\text { w.r.t. } & \\
& x_{1}+x_{2}+x_{3} \leq 2 \\
& x_{1}+x_{2}+x_{4} \leq 2 \\
& x_{3}+x_{4} \leq 1
\end{array}
$$

$$
x_{1}, x_{2}, x_{3}, x_{4} \quad \text { integral }
$$

(a) Solve the LP relaxation with a solver (e.g lp-solve or our Clp demo program).
(b) Generate all feasible integral points using program vint (PORTA package).
(c) Transform the point representation into the halfspace representation using program traf (PORTA package).
(d) Solve the resulting linear program again with your lp solver.
2. Branch and Bound

$$
\begin{array}{ll}
\max & 8 x_{1}+11 x_{2}+6 x_{3}+4 x_{4} \\
\text { w.r.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 14 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} &
\end{array}
$$

(a) Solve the LP relaxation with a solver.
(b) Apply branch and bound to find the optimal solution to the ILP.

