Optimization

WS 2012/13

Exercises 1

1. Transform the linear optimization problem

$$
\begin{aligned}
\min & 2 x_{1}+3 x_{2} \\
\text { w.r.t. } & 3 x_{1}+6 x_{2} \leq 7 \\
& 2 x_{1}+2 x_{2}=5 \\
& x_{2}
\end{aligned}
$$

to the canonical form $\max \left\{c^{T} x \mid A x=b, x \geq 0\right\}$.
2. Consider the linear optimization problem:

$$
\begin{aligned}
& \max 3 x_{1}+4 x_{2} \\
& \text { w.r.t. } 3 x_{1}+2 x_{2} \leq 12 \\
& 5 x_{1}+10 x_{2} \leq 30 \\
& 2 x_{2} \leq 5 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

(a) Determine the feasible region.
(b) Solve the optimization problem graphically.
(c) Solve the problem for the new objective function $6 x_{1}+12 x_{2}$.

3. Profit optimization

A plant produces two types of refrigerators, A and B. There are two production lines, one dedicated to producing refrigerators of Type A, the other to producing refrigerators of type B. The capacity of the production line for A is 60 units per day, the capacity of the production line for B is 50 units per day. Type A requires 20 minutes of labor whereas type B requires 40 minutes of labor. Presently, there is a maximum of 40 hours of labor per day. According to national environment protection laws at least 50% of the produced refigerators has to be of type B. Profit contributions are $\$ 20$ per refrigerator of type A produced and $\$ 25$ per type B produced. What should the daily production be?
(a) Formulate the problem as a linear program.
(b) Solve the linear program graphically to compute the coordinates of the optimal solution as well as its value.

