Prof. Dr. Alexander Bockmayr, Prof. Dr. Knut Reinert, Sandro Andreotti

December 13, 2012

Optimization

WS 2012/13

Exercises 1

1. Transform the linear optimization problem

\min	$2x_1$	+	$3x_2$		
w.r.t.	$3x_1$	+	$6x_2$	\leq	7
	$2x_1$	+	$2x_2$	=	5
	x_2			\geq	0

to the canonical form $\max\{c^T x \mid Ax = b, x \ge 0\}.$

2. Consider the linear optimization problem:

\max	$3x_1$	+	$4x_2$		
w.r.t.	$3x_1$	+	$2x_2$	\leq	12
	$5x_1$	+	$10x_{2}$	\leq	30
			$2x_2$	\leq	5
	$x_1,$		x_2	\geq	0

- (a) Determine the feasible region.
- (b) Solve the optimization problem graphically.
- (c) Solve the problem for the new objective function $6x_1 + 12x_2$.

3. Profit optimization

A plant produces two types of refrigerators, A and B. There are two production lines, one dedicated to producing refrigerators of Type A, the other to producing refrigerators of type B. The capacity of the production line for A is 60 units per day, the capacity of the production line for B is 50 units per day. Type A requires 20 minutes of labor whereas type B requires 40 minutes of labor. Presently, there is a maximum of 40 hours of labor per day. According to national environment protection laws at least 50% of the produced refigerators has to be of type B. Profit contributions are \$20 per refrigerator of type A produced and \$25 per type B produced. What should the daily production be?

- (a) Formulate the problem as a linear program.
- (b) Solve the linear program graphically to compute the coordinates of the optimal solution as well as its value.