Chapter 5
Multiple Sequence Alignment

Aligning simultaneously several sequences is among the most important problems
in computational molecular biology. It finds many applications in computational
genomics and molecular evolution.

This chapter is divided into five sections. Section 5.1 gives a definition of multiple
sequence alignment and depicts a multiple alignment of three sequences.

There are several models for assessing the score of a given multiple sequence
alignment. The most popular ones are sum-of-pairs (SP), tree alignment, and con-
sensus alignment. In Section 5.2, we focus our discussion on the SP alignment scor-
ing scheme.

Section 5.3 considers the problem of aligning three sequences based on the SP
alignment model. An exact multiple alignment algorithm is given for such a prob-
lem.

For many applications of multiple alignment, more efficient heuristic methods
are often required. Among them, most methods adopt the approach of “progressive”
pairwise alignments introduced in Section 5.4. It iteratively merges the most similar
pairs of sequences/alignments following the principle “once a gap, always a gap.”

Finally, we conclude the chapter with the bibliographic notes in Section 5.5.

5.1 Aligning Multiple Sequences

Simultaneous alignment of several sequences is among the most important problems
in computational molecular biology. Its purpose is to reveal the biological relation-
ship among multiple sequences. For example, it can be used to locate conservative
regions, study gene regulation, and to infer evolutionary relationship of genes or
proteins.

Recall the definition of a pairwise alignment given in Chapter 1.2.1. An align-
ment of two sequences is obtained by inserting some number (perhaps 0) of spaces,
denoted by dashes, in each sequence to yield padded sequences of equal length, then
placing the first padded sequence above the other. To emphasize that all sequence

82 . 5 Multiple Sequence Alignment
MNE TTATTTCACC————— CTTATATCA
So: TCCTTTCA-~———===~ TGATATCA

S3: T--TTTCACCGACATCAGATAAAA

Fig. 5.1 A sample of multiple sequence alignment.

entries are required to appear in the alignment, we use the term global (as opposed
to local). Each column of an alignment is called an aligned pair. In general, we re-
quire that an alignment does not contain two spaces in a column, which we call the
null column. In context where null columns are permitted the term quasi-alignment
is used to emphasize that the ban on null columns has been temporarily lifted.

Assume that we are given Sy, S2, ..., Sy, each of which is a sequence of “letters.”
A multiple alignment of these sequences is an m x n array of letters and dashes,
such that no column consisting entirely of dashes, and removing dashes from row
i leaves the sequence S; for 1 <i < m. For each pair of sequences, say S; and S,
rows i and j of the m-way alignment constitute a pairwise quasi-alignment of S; and
§;; removing any null columns produces a pairwise alignment of these sequences.
Figure 5.1 gives a multiple alignment of three sequences:

5.2 Scoring Multiple Sequence Alignment

For any two given sequences, there are numerous alignments of those sequences.
To make explicit the criteria for preferring one alignment over another, we define
a score for each alignment. The higher the score is, the better the alignment is. Let
us review the scoring scheme given in Section 1.3. First, we assign a score denoted

o (x,y) to each aligned pair § . In the cases that x or y is a space, o(x,y) = —f.

Score function o depends only on the contents of the two locations, not their posi-
tions within the sequences. Thus, o(x,y) does not depend on where the particular
symbols occur. However, it should be noted that there are situations where position-
dependent scores are quite appropriate. Similar remarks hold for the gap penalties
defined below.

The other ingredient for scoring pairwise alignments is a constant gap-opening
penalty, denoted ., that is assessed for each gap in the alignment; a gap is defined
as a run of spaces in a row of the alignment that is terminated by either a non-space
symbol or an end of the row. Gap penalties are charged so that a single gap of length,
say, k will be preferred to several gaps of total length k, which is desirable since a
gap can be created in a single evolutionary event. Occasionally, a different scoring
criterion will be applied to end-gaps, i.e., gaps that are terminated by an end of the
row. The score of an alignment is defined as the sum of o values for all aligned
pairs, minus « times the number of gaps.

5.2 Scoring Multiple Sequence Alignment 83

Selection of the scoring parameters ¢ and o is often a major factor affecting
the usefulness of the computed alignments. Ideally, alignments are determined in
such a way that sequence regions serving no important function, and hence evolving
freely, should not align, whereas regions subject to purifying selection retain suffi-
cient similarity that they satisfy the criteria for alignment. The chosen alignment
scoring scheme determines which regions will be considered non-aligning and what
relationships will be assigned between aligning regions. Appropriateness of scoring
parameters depends on several factors, including evolutionary distance between the
species being compared.

When simultaneously aligning more than two sequences, we want knowledge of
appropriate parameters for pairwise alignment to lead immediately to appropriate
settings for the multiple-alignment scoring parameters. Thus, one might desire a
scoring scheme for multiple alignments that is intimately related to their induced
pairwise alignment scores. Of course, it is also necessary that the approach be
amenable to a multiple-alignment algorithm that is reasonably efficient with com-
puter resources, i.e., time and space.

There are several models for assessing the score of a given multiple sequence
alignment. The most popular ones are sum-of-pairs (SP), tree alignment, and con-
sensus alignment. We focus our discussion on the SP alignment scoring scheme.

To attain this tight coupling of pairwise and multiple alignment scores at a rea-
sonable expense, many multiple alignment tools have adopted the SP substitution
scores and quasi-natural gap costs, as described by Altschul [2]. Some notation will
help for a precise description of these ideas.

Scores for multiple alignments are based on pairwise alignment scores, which
we described above. With an m-way alignment IT, we would like to determine
appropriate parameters for the score, say Score; j, for pairwise alignments between
S; and S; (i.e., the ith and jth sequences), then set

(SP) Score(IT) = ZScore,;j(Hi,_,),

i<j

where IT; ; is the pairwise alignment of S; and S; induced by IT (see Figure 5.2).

II, >
Si: TTATTTCACCCTTATATCA
S2: TCCTTTCA---TGATATCA
I 3
Si: TTATTTCACC-——-- CTTATATCA
S3: T--TTTCACCGACATCAGATAAAA
IL 3

Sy TCCTTTCA--—————— TGATATCA
S3: T--TTTCACCGACATCAGATAAAA

Fig. 5.2 Three pairwise alignments induced by the multiple alignment in Figure 5.1.

84 . 5 Multiple Sequence Alignment
Sy: TTATTTCACC—=——— CTTATATCA
Sy: TCCTTTCA-—————~~ TGATATCA

Fig. 5.3 A quasi-alignment of IT (in Figure 5.1) projected on S; and S, without discarding null
columns.

The projected substitution costs of SP-alignments can be computed easily. How-
ever, as noted in Altschul [2], strictly computing the imposed affine gap costs results
in undesirable algorithmic complexity. The complications come from the fact that
we may have to save a huge number of the relevant histories in order to decide if
we need to charge a gap opening-up penalty for a given deletion (or insertion) pair.
Altschul further observed that this complexity of saving all possible relevant histo-
ries can be reduced dramatically if for every pair of rows of the m-way alignment
we assess an additional gap penalty for each “quasi-gap,” defined as follows. Fix a
pair of rows and consider a gap, G, in the corresponding pairwise quasi-alignment,
i.e., a run of consecutive gap symbols occurring in one of the rows (the run should
be extended in both directions until it hits a letter or the end of the sequence). If at
least one space in G is aligned with a letter in the other row, then G corresponds to
a gap in the pairwise alignment (i.e., after discarding null columns), and hence is
penalized. The other possibility is that every space in G is aligned with a space in
the other sequence. If the gap in the other sequence starts strictly before and ends
strictly after G, then G is called a quasi-gap and is penalized. For example, the gap
in 8> of Figure 5.3 is a quasi-gap in a projected alignment without discarding null
columns. In IT; ; of Figure 5.2, there is only one deletion gap counted. But in practi-
cal implementation, we might assess two gap penalties since an additional quasi-gap
penalty might be imposed. If either end of G is aligned to an end of the gap in the
other sequence, then the gap is not penalized.

In summary, a multiple alignment is scored as follows. For each pair of rows,
say rows i and j, fix appropriate substitution scores o; ; and a gap cost ¢ ;. Then
the score for the multiple alignment is determined by equation (SP), where each
Score; j(IT; ;) is found by adding the o values for non-null columns of the pairwise
quasi-alignment, and subtracting a gap penalty o for each gap and each quasi-gap.

5.3 An Exact Method for Aligning Three Sequences

The pairwise alignment algorithms introduced in Chapter 3 can be easily extended
to align for more than two sequences. Consider the problem of aligning three se-
quencesA =ajay...ay,B=0b1b;...by,,and C =c|c3...cy, based on the SP align-
ment model. Let x, y and z be any alphabet symbol or a gap symbol. Assume that
a simple scoring scheme for pairwise alignment is imposed where a score (x,y)

is defined for each aligned pair ;) Let ¢(x,y,z) be the score of an aligned col-

5.4 Progressive Alignment 85

X

umn | y |. The score ¢(x,y,z) can be computed as the sum of x(x,y), x(x,z), and
z

2(0,2).

Let S[i, j,k] denote the score of an optimal alignment of ajas...a;, bib; .. by,
and cj ¢y ...cr. With proper initializations, S[i, j,k] for 1 <i<n;, 1< j < ny, and
1 <k < n3 can be computed by the following recurrence.

(S[l‘*l J,k]+¢((l,,- —’)a

Sli,J I’k}+¢(=)

Sli,j k= 1]+ ¢(—,)7

i, j— 1,k—l]+¢(,bv,,ck),

i—1,j,k—=1]+¢(a;,—,cx),
l,j_lvk]+¢(aivbf’_)v
1,j—1,k— 1]+¢(a,’,b',',ck).

S[i, j, k] = max

[isJ
[
[i
[
[i—
[i-

MUJC/JC/J

The value S[ny,n,n3] is the score of an optimal multiple alignment of A, B,
and C. The three-dimensional dynamic-programming matrix contains O(njnyn3)
entries, and each entry takes the maximum value from the 2° — 1 = 7 possible en-
tering edges. All possible combinations of ¢ values can be computed in advance.
Thus, we can align three sequences of lengths ny, ny and 13 in O(n1nyn3) time.

Following this approach, one can easily derive an O(n"2™)-time algorithm for
constructing m-way alignment of length n. This exact method in general requires
too much time and space to be practical for DNA sequences of average length. Not
to mention that there are a lot more possible entering edges (configurations) for
each entry if affine gap penalties or affine quasi-gap penalties are used. Further-
more, the multiple sequence alignment has been shown to be NP-hard by Wang and
Jiang [195], meaning that there is no polynomial-time algorithm for it unless NP=P.

Despite the intractability of the multiple alignment problem, some researchers
proposed “efficient” exact methods by pruning the dynamic-programming matrix
with some optimal score lower bound. These exact methods have been proved to be
useful in certain context.

&
5.4 Progressive Alignment

For many applications of multiple alignment, more efficient heuristic methods are
often required. Among them, most methods adopt the approach of “progressive”
pairwise alignments proposed by Feng and Doolittle [69]. It iteratively merges the
most similar pairs of sequences/alignments following the principle “once a gap,
always a gap.” Thus, later steps of the process align two “sequences,” one or both of
which can themselves be an alignment, i.e., sequence of fixed-height columns.

In aligning two pairwise alignments, the columns of each given pairwise align-
ment are treated as “symbols,” and these sequences of symbols are aligned by

86 . 5 Multiple Sequence Alignment
GAATC
GGA - T
GC-TC
O
o < A- - -C
= GAATC
. GGA - T

Fig. 5.4 Aligning two alignments.

padding each sequence with appropriate-sized columns containing only dash sym-
bols. It is quite helpful to recast the problem of aligning two alignments as an equiv-
alent problem of finding a maximum-scoring path in an alignment graph. For ex-
ample, the path depicted in Figure 5.4 corresponds to a 4-way alignment. This al-
ternative formulation allows the problem to be visualized in a way that permits the
use of geometric intuition. We find this visual imagery critical for keeping track
of the low-level details that arise in development and implementation of alignment
algorithms.

Each step of the progressive alignment procedure produces an alignment that is
highest-scoring relative to the chosen scoring scheme subject to the constraint that
columns of the two smaller alignments being combined are treated as indivisible
“symbols.” Thus, the relationships between entries of two of the original sequences
are fixed at the first step that aligns those sequences or alignments containing those
sequences.

For that reason, it is wise to first compute the pairwise alignments that warrant
the most confidence, then combine those into multiple alignments. Though each
step is performed optimally, there is no guarantee that the resulting multiple align-
ment is highest-scoring over all possible ways of aligning the given sequences. An
appropriate order for progressive alignment is very critical for the success of a mul-
tiple alignment program. This order can either be determined by the guide tree con-
structed from the distance matrix of all pairs of sequences, or can be inferred di-
rectly from an evolutionary tree for those sequences. In any case, the progressive
alignment algorithm invokes the “generalized” pairwise alignment m — 1 times for
constructing an m-way alignment, and-its time complexity is roughly the order of
the time for computing all O(m?) pairwise alignments.

5.5 Bibliographic Notes and Further Reading

In spite of the plethora of existing ideas and methods for multiple sequence align-
ment, it remains as an important and exciting line of investigation in computational

5.5 Bibliographic Notes and Further Reading 87

molecular biology. Recently, Miller et al. [140] compiled a set of alignments of 28
vertebrate genome sequences in the UCSC Genome Browser [104].

5.1

We compile a list of multiple alignment tools in Table C.3 of Appendix C.
There are a few multiple alignment benchmarks available for testing such as BAI-
iBASE [20], PREFAB [62], and SMART [122]. Thompson et al. [190] gave the first
systematic comparison of multiple alignment programs using BAIiBASE bench-
mark dataset.

5.2

A recent survey by Notredame [154] divides the scoring schemes in two cat-
egories. Matrix-based methods, such as ClustalW [120, 189], Kalign [121], and
MUSCLE [62], use a substitution matrix to score matches. On the other hand,
consistency-based methods, such as T-Coffee [155], MUMMALS [163], and Prob-
Cons [59], compile a collection of pairwise alignments and produce a position-
specific substitution matrix to judge the consistency of a given aligned pair. An
alternative is to score a multiple alignment by using a consensus sequence that is
derived from the consensus of each column of the alignment.

Besides these two categories, there are some other scoring schemes. For example,
DIALIGN [143] focuses on scoring complete segments of sequences.

5.3

A straightforward multiple sequence alignment algorithm runs in exponential
time. More “efficient” exact methods can be found in [38, 84, 127]. In fact, it has
been shown to be NP-hard by Wang and Jiang [195]. Bafna et al. [18] gave an
algorithm with approximation ratio 2 — £/m for any fixed £.

54

A heuristic progressive alignment approach was proposed by Feng and Doolit-
tle [69]. It iteratively merges the most similar pairs of sequences/alignments follow-
ing the principle “once a gap, always a gap.”

Surprisingly, the problem of aligning two SP-alignments under affine gap penal-
ties has been proved to be NP-hard [107, 132]. However, it becomes tractable if
affine quasi-gap penalties are used [2].

ClustalW [120, 189] is the most popular multiple alignment program. It works
in three stages. In the first stage, all pairs of sequences are aligned, and a distance
matrix is built. The second stage constructs a guide tree from the distance matrix.
Finally, in the third stage, the sequences as well as the alignments are aligned pro-
gressively according to the order in the guide tree.

YAMA [41] is a multiple alignment program for aligning long DNA sequences.
At each progressive step, it implements the generalized Hirschberg linear-space

88 . 5 Multiple Sequence Alignment

algorithm and maximizes the sum of pairwise scores with affine quasi-gap penal-
ties. To increase efficiency, a step of the progressive alignment algorithm can be
constrained to the portion of the dynamic-programming grid lying between two
boundary lines. Another option is to consider constrained alignments consisting of
aligned pairs in nearly optimal alignments. A set of “patterns” is specified (perhaps
the consensus sequences for transcription factor binding sites); YAMA selects, from
among all alignments with the highest score, an alignment with the largest number
of conserved blocks that match a pattern.

MUSCLE [62, 63] is a very efficient and accurate multiple alignment tool. It
uses a strategy similar to PRRP [80] and MAFFT [106]. It works in three stages.
Stage 1 is similar to ClustalW. A guide tree is built based on the distance matrix,
which is derived from pairwise similarities. A draft progressive alignment is built
according the constructed guide tree. In Stage 2, MUSCLE computes a Kimura dis-
tance matrix [111] using the pairwise identity percentage induced from the multiple
alignment. It then builds a new guide tree based on such a matrix, compares it with
the previous tree, and re-aligns the affected subtrees. This stage may be iterated if
desired. Stage 3 iteratively refines the multiple alignment by re-aligning the pro-
files of two disjoint subsets of sequences derived from deleting an edge from the
tree constructed in Stage 2. This refinement is a variant of the method by Hirosawa
et al. [90]. If the new alignment has a better score, save it. The refinement process
terminates if all edges incur no changes or a user-specified maximum number of
iterations has been reached.

PART II. THEORY

