62) 3 Pairwise Sequence Alignment

a given state. The book by Durbin et al. [61] is a terrific reference book for this
paradigm.

Alignment of two genomic sequences poses problems not well addressed by ear-
lier alignment programs.

PipMaker [178] is a software tool for comparing two long DNA sequences to
identify conserved segments and for producing informative, high-resolution dis-
plays of the resulting alignments. It displays a percent identity plot (pip), which
shows both the position in one sequence and the degree of similarity for each
aligning segment between the two sequences in a compact and easily understand-
able form. The alignment program used by the PipMaker network server is called
BLASTZ [177]. It is an independent implementation of the Gapped BLAST algo-
rithm specifically designed for aligning two long genomic sequences. Several mod-
ifications have been made to BLASTZ to atfain efficiency adequate for aligning
entire mammalian genomes and to increase the sensitivity.

MUMmer [119] is a system for aligning entire genomes rapidly. The core of the
MUMmer algorithm is a suffix tree data structure, which can be built and searched
in linear time and which occupies only linear space. DisplayMUMs 1.0 graphically
presents alignments of MUMs from a set of query sequences and a single reference
sequence. Users can navigate MUM alignments to visually analyze coverage, tiling
patterns, and discontinuities due to misassemblies or SNPs.

The analysis of genome rearrangements is another exciting field for whole
genome comparison. It looks for a series of genome rearrangements that would
transform one genome into another. It was pioneered by Dobzhansky and Sturte-
vant [60] in 1938. Recent milestone advances include the works by Bafna and
Pevzner [19], Hannenhalli and Pevzner [86], and Pevzner and Tesler [166].

Chapter 4
Homology Search Tools

The alignment methods introduced in Chapter 3 are good for comparing two
sequences accurately. However, they are not adequate for homology search against
a large biological database such as GenBank. As of February 2008, there are ap-
proximately 85,759,586,764 bases in 82,853,685 sequence records in the traditional
GenBank divisions. To search such kind of huge databases, faster methods are re-
quired for identifying the homology between the query sequence and the database
sequence in a timely manner.

One common feature of homology search programs is the filtration idea, which
uses exact maiches or approximate matches between the query sequence and the
database sequence as a basis to judge if the homology between the two sequences
passes the desired threshold.

This chapter is divided into six sections. Section 4.1 describes how to implement
the filtration idea for finding exact word matches between two sequences by using
efficient data structures such as hash tables, suffix trees, and suffix arrays.

FASTA was the first popular homology search tool, and its file format is still
widely used. Section 4.2 briefly describes a multi-step approach used by FASTA for
finding local alignments.

BLAST is the most popular homology search tool now. Section 4.3 reviews the
first version of BLAST, Ungapped BLAST, which generates ungapped alignments.
It then reviews two major products of BLAST 2.0: Gapped BLAST and Position-
Specific Iterated BLAST (PSI-BLAST). Gapped BLAST produces gapped align-
ments, yet it is able to run faster than the original one. PSI-BLAST can be used
to find distant relatives of a protein based on the profiles derived from the multi-
ple alignments of the highest scoring database sequence segments with the query
segment in iterative Gapped BLAST searches.

Section 4.4 describes BLAT, short for “BLAST-like alignment tool.” It is of-
ten used to search for the database sequences that are closely related to the query
sequences such as producing mRNA/DNA alignments and comparing vertebrate se-
quences.

PatternHunter, introduced in Section 4.5, is more sensitive than BLAST when
a hit contains the same number of matches. A novel idea in PatternHunter is the

64 . 4 Homology Search Tools

use of an optimized spaced seed. Furthermore, it has been demonstrated that using
optimized multiple spaced seed will speed up the computation even more.
Finally, we conclude the chapter with the bibliographic notes in Section 4.6.

4.1 Finding Exact Word Matches

An exact word match is a run of identities between two sequences. In the following,
we discuss how to find all short exact word matches, sometimes referred to as hits,
between two sequences using efficient data structures such as hash tables, suffix
trees, and suffix arrays.

Given two sequences A = ajaz...a,, and B = b;b,...b,, and a positive integer
k, the exact word match problem is to find all occurrences of exact word matches
of length k, referred to as k-mers between A and B. This is a classic algorithmic
problem that has been investigated for decades. Here we describe three approaches
for this problem.

4.1.1 Hash Tables

A hash table associates keys with numbers. It uses a hash function to transform a
given key into a number, called hash, which is used as an index to look up or store
the corresponding data. A method that uses a hash table for finding all exact word
matches of length w between two DNA sequences A and B is described as follows.

Since a DNA sequence is a sequence of four letters A, C, G, and T, there are 4"
possible DNA w-mers. The following encoding scheme maps a DNA w-mer to an
integer between 0 and 4" — 1. Let C = c|¢;...c, be a w-mer. The hash value of C
is written V(C) and its value is

V(C) =X X g1 +x X 42 4+ X 407
where x; =0,1,2,3 if ¢; = A, C, G, T, respectively. For example, if C=GTCAT, then
V(C) =2x4* +3x 43+ 1x42 +0x 4! +3 x40 =732,

In fact, we can use two bits to represent each nucleotide: A(00), C(01), G(10), and
T(11). In this way, a DNA segment is transformed into a binary string by compress-
ing four nucleotides into one byte. For C=GTCAT given above, we have

V(C) =732 =1011010011,.

Initially, a hash table H of size 4" is created. To find all exact word matches of
length w between two sequences A and B, the following steps are executed. The first
step is to hash sequence A into a table. All possible w-mers in A are calculated by

4.1 Finding Exact Word Matches 65

123 45678 910
GATCCATCTT

000000 (0) AAA

001101 (13) | ATC

—>{2]
010011 (16) | CAT
010100 (20) | CCA |»[4]

011111 (31) | CTT

100011 (35) | GAT

110101 (53) | TCC |>{3]
110110 (54) | TCG
110111 (55) | TCT

111111 (63) | TTT

Fig. 4.1 A 3-mer hash table for GATCCATCTT.

sliding a window of size w from position 1 to position m — w -+ 1. For each word
C, we compute V(C) and insert C to the entry H[V(C)]. If there is more than one
window word having the same hash value, a linked list or an array can be used to
store them. Figure 4.1 depicts the process of constructing a hash table of word size
3 for GATCCATCTT.

Once a hash table for sequence A has been built, we can now scan sequence B
by sliding a window of size w from position 1 to position n — w + 1. For each scan
S, we compute V (S) and find its corresponding exact word matches, if any, in A by
looking up the entry H[V'[S] in the hash table H. All the exact word matches can be
found in an order of their occurrences.

A hash table works well in practice for a moderate word size, say 12. However, it
should be noted that for some larger word sizes, this approach might not be feasible.
Suppose an exact word match of interest has 40 nucleotides. There are 4*° possible
combinations. If we use an array to store all possible keys, then we would need 440
entries to assign a different index to each combination, which would be far beyond
the capacity of any modern computers. A more succinct indexing technique, such
as suffix trees or suffix arrays, is required for this particular application.

66 i 4 Homology Search Tools

4.1.2 Suffix Trees

A sequence A = ajay...a, hasm suffixes, namely, @y ...au, @2 ... Ay, A3 ... Ay ++ -5
and a,,. A suffix tree for sequence A is a rooted tree such that every suffix of A
corresponds uniquely to a path from the root to a tree node. Furthermore, each edge
of the suffix tree is labeled with a nonempty substring of A, and all internal nodes
except the root must have at lease two children.

Figure 4.2 constructs a suffix tree for GATCCATCTT. The number of a node
specifies the starting position of its corresponding suffix. Take the number “5” for
example. If we concatenate the labels along the path from the root to the node with
the number “5,” we get CATCTT, which is a suffix starting at position 5. Notice that
some internal node might associate with a number, e.g., the node with number “10”
in this figure. The reason is that T is suffix starting at position 10, yet it is also a
prefix of another three suffixes TCCATCTT, TCTT, and TT.

For convenience, one may require that all suffixes correspond to paths from the
root to the leaves. In fact, if sequence A is padded with a terminal symbol, say $,
that does not appear in A, then every suffix would correspond to a path from the
root to a leaf node in the suffix tree because a suffix with “$” will not be a prefix of
any other suffix. Figure 4.3 constructs a suffix tree for GATCCATCTTS. Now every
suffix corresponds to a path from the root to a leaf, including the suffix starting at
position 10.

For a constant-size alphabet, the construction of a suffix tree for a sequence of
length m can be done in O(m) time and space based on a few other crucial obser-
vations, including the use of suffix links. Once a suffix tree has been built, we can
answer several kinds of pattern matching queries iteratively and efficiently. Take the
exact word match problem for example. Given are two sequences A=aa...anm,

12345678 910
GATCCATCTT

GATCCATCTT

Fig. 4.2 A suffix tree for GATCCATCTT.

4.1 Finding Exact Word Matches 67

123 4567 8 91011
GATCCATCTTS

Fig. 4.3 A suffix tree for GATCCATCTTS.

and B =byby...b,, and a positive integer w. An exact word match of length w oc-
curs in a;@jty ... Ajpw—y and bjbjyy ... by, if and only if the suffixes a;a;1 ... a,
and bjbj.y...b, share a common prefix of length at least w. With a suffix tree at
hand, finding a common prefix becomes an easy job since all suffixes with a com-
mon prefix will share the path from the root that labels out that common prefix in
the suffix tree. Not only does it work well for finding all exact word matches of a
fixed length, it can also be used to detect all maximal word matches between two
sequences or among several sequences by employing a so-called generalized suffix

tree, which is a suffix tree for a set of sequences. Interested readers are referred to
the book by Gusfield [85].

4.1.3 Suffix Arrays

A suffix array for sequence A = ajay...a, is an array of all suffixes of A in lex-
icographical order. Figure 4.4 constructs a suffix array for GATCCATCTT. At first
glance, this conceptual representation seems to require quadratic space, but in fact
the 's.ufﬁx array needs only linear space since it suffices to store only the starting
positions for all sorted suffixes.

Recall that an exact word match of length w occurs in a;a;y1...a;1—; and
bjbjiy...bjrw—1 if and only if the suffixes a;a;y; ...a, and bjbjiy...b, share a
common prefix of length at least w. Once a suffix array has been built, one can look
up the table for any particular prefix by a binary search algorithm. This search can be
done even more efficiently if some data structure for querying the longest common
prefixes is employed.

68 . 4 Homology Search Tools
123 4567 8 910
GATCCATCTT

(a) all suffixes (b) suffix array

1 2
2
3
4
5
6
7
8
9
10 T 9

Fig. 4.4 A suffix array for GATCCATCTT.

4.2 FASTA

FASTA uses a multi-step approach to finding local alignments. First, it finds runs
of identities, and identifies regions with the highest density of identities. A param-
eter ktup is used to describe the minimum length of the identity runs. These runs
of identities are grouped together according to their diagonals. For each diagonal, it
locates the highest-scoring segment by adding up bonuses for matches and subtract-
ing penalties for intervening mismatches. The ten best segments of all diagonals are
selected for further consideration.

The next step is to re-score those selected segments using the scoring matrix such
as PAM and BLOSUM, and eliminate segments that are unlikely to be part of the
alignment. If there exist several segments with scores greater than the cutoff, they
will be joined together to form a chain provided that the sum of the scores of the
joined regions minus the gap penalties is greater than the threshold.

Finally, it considers the band of a couple of residues, say 32, centered on the chain
found in the previous step. A banded Smith-Waterman method is used to deliver an
optimal alignment between the query sequence and the database sequence.

Since FASTA was the first popular biological sequence database search program,
its sequence format, called FASTA format, has been widely adopted. FASTA format
is a text-based format for representing DNA, RNA, and protein sequences, where
each sequence is preceded by its name and comments as shown below:

>HAHU Hemoglobin alpha chain - Human
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTK
TYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNAL

4.3 BLAST 69

SALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA
VHASLDKFLASVSTVLTSKYR

4.3 BLAST

The BLAST program is the most widely used tool for homology search in DNA and
protein databases. It finds regions of local similarity between a query sequence and
each database sequence. It also calculates the statistical significance of matches. It
has been used by numerous biologists to reveal functional and evolutionary relation-
ships between sequences and identify members of gene families.

The first version of BLAST was launched in 1990. It generates ungapped align-
ments and hence is called Ungapped BLAST. Seven years later, BLAST 2.0 came
to the world. Two major products of BLAST 2.0 are Gapped BLAST and Position-
Specific Iterated BLAST (PSI-BLAST). Gapped BLAST produces gapped align-
ments, yet it is able to run faster than the original one. PSI-BLAST can be used to
find distant relatives of a protein based the profiles derived from the multiple align-
ments of the highest scoring database sequence segments with the query segment in
iterative Gapped BLAST searches.

4.3.1 Ungapped BLAST

As discussed in Chapter 3, all possible pairs of residues are assigned their similar-
ity scores when we compare biological sequences. For protein sequences, PAM or

CTATGC
4 4|44 4

44|54 4

G
7
4|44 4 -4
4
4

51-4|-4|-4 4145 4

5 4|44 5 4|45 4 -4

A

4

5
46|45 |4 -4/5|5-4 5

4

4

5

4 4|5 |4 4 4144 4 4

4 5|45 4 4/5|5 4.5 4

45|45 4 4,5 |5 -4 5 4

- 404> 004H>»Q@

Fig. 4.5 A matrix of similarity scores for the pairs of residues of the two sequences GATCCATCTT
and CTATCATTCTG.

70 . 4 Homology Search Tools

BLOSUM substitution matrix is often employed, whereas for DNA sequences, an
identity is given a positive score and a mismatch is penalized by a negative score.
Figure 4.5 depicts the similarity scores of all the pairs of the residues of the two
sequences GATCCATCTT and CTATCATTCTG, where an identity is given a score
+5 and a mismatch is penalized by -4.

Let a sequence segment be a contiguous stretch of residues of a sequence. The
score for the aligned segments a;aj+| ...air¢—; and bjbjiy...bj ¢y of length £ is
the sum of the similarity scores for each pair of aligned residues (a;,b;4x) where
0 < k < £. A maximal-scoring segment pair (MSP) is the highest scoring pair of seg-
ments of the same length chosen from the two sequences. Since its score is the high-
est, any stretch of this aligned segment pair will not increase the similarity score.
In order to compute the MSP score, a straightforward approach is to compute the
maximum-sum segment for each diagonal of the similarity scores matrix of the two
sequences. Fix a diagonal, the maximum-sum segment can be found by a linear-time
algorithm for the maximum-sum segment problem given in Section 2.4.2. Figure 4.6
locates a maximal-scoring segment pair in Figure 4.5.

However, there are O(m + n) diagonals to be processed. If we apply the linear-
time algorithm to all the diagonals, the resulting method takes the time propor-
tional to the product of the lengths of the sequences. To speed up the computation,
BLAST computes approximate MSPs, often referred to as high-scoring segment
pairs (HSPs), in two phases. The first phase is to scan the database for hits, which
are word pairs of length w with score at least 7. The second phase is to extend each
hit to see if it is contained within a segment pair whose score is no less than S.

Let us now explain these two phases in greater detail. In the first phase, BLAST
seeks only segment pairs containing a Ait, which is a word pair of length w with score
at least 7. For DNA sequences, these word pairs are exact word matches of fixed

4 567 8 910M1

1 G 4|4 4. 4 4|44 445
2 Al 4|4 4 45|44 4 -4 4
3 T 4|5 |4]5]14 45|54 5 -4
4 C 5|-4|4 -4|5|4|4|4 5 -4 4
5 Ci s5|-4|-4 -4 5|al4|4 5 4 4
6 A 4|45 4 -4, 5]4]4 -4 4 4
7 T 4|5|4 5 -4 465|564 5 -4
8 C 54|44 5 4|4|-4]5]-4 -4
Q T 4|5|4/5 -4 4|5|5 -415/}-4
10T 4|5 4 5 -4 455 4 5 4

Fig. 4.6 A maximum-scoring segment pair of the two sequences GATCCATCTT and
CTATCATTICTG.

4.3 BLAST 71

length w, whereas for protein sequences, these word pairs are those fixed-length
segment pairs who have a score no less than the threshold 7.

Section 4.1 gives three methods for finding exact word matches between two
sequences. Figure 4.7 depicts all the exact word matches of length three between
the two sequences GATCCATCTT and CTATCATTCTG.

For protein sequences, we are not looking for exact word matches. Instead, a hit
is a fixed-length segment pair having a score no less than the threshold 7. A query
word may be represented by several different words whose similarity scores with
the query word are at least 7.

The second phase of BLAST is to extend a hit in both directions (diagonally)
to find a locally maximal-scoring segment pair containing that hit. It continues the
extension in one direction until the score has dropped more than X below the max-
imum score found so far for shorter extensions. If the resulting segment pair has
score at least S, then it is reported.

It should be noted that both the Smith-Waterman algorithm and BLAST asymp-
totically take the time proportional to the product of the lengths of the sequences.
The speedup of BLAST comes from the reduced sample space size. For two se-
quences of lengths m and n, the Smith-Waterman algorithm involves (n+ 1) X (m+
1) entries in the dynamic-programming matrix, whereas BLAST takes into account
only those w-mers, whose number is roughly mn /4" for DNA sequences or mn /20"
for protein sequences.

123 4567 8 91011
CTATCATTCTG

\\\

Fig. 4.7 Exact word matches of length three between the two sequences GATCCATCTT and
CTATCATTCTG.

© 0O N O A WN =
204> 004>»00

-
O

72 : 4 Homology Search Tools

4.3.2 Gapped BLAST

Gapped BLAST uses a new criterion for triggering hit extensions and generates
gapped alignment for segment pairs with “high scores.”

It was observed that the hit extension step of the original BLAST consumes most
of the processing time, say 90%. It was also observed that an HSP of interest is much
longer than the word size w, and it is very likely to have multiple hits within a rel-
atively short distance of one another on the same diagonal. Specifically, the two-hit
method is to invoke an extension only when two non-overlapping hits occur within
distance D of each other on the same diagonal (see Figure 4.8). These adjacent non-
overlapping hits can be detected if we maintain, for each diagonal, the coordinate of
the most recent hit found.

Another desirable feature of Gapped BLAST is that it generates gapped align-
ments explicitly for some cases. The original BLAST delivers only ungapped align-
ments. Gapped alignments are implicitly taken care of by calculating a joint statis-
tical assessment of several distinct HSPs in the same database sequence.

A gapped extension is in general much slower than an ungapped extension. Two
ideas are used to handle gapped extensions more efficiently. The first idea is to
trigger a gapped extension only for those HSPs with scores exceeding a threshold
Sg. The parameter S, is chosen in a way that no more than one gap extension is
invoked per 50 database sequences.

The second idea is to confine the dynamic programming to those cells for which
the optimal local alignment score drops no more than X, below the best alignment

'/-SD\'

\
N
N

Fig. 4.8 Two non-overlapping hits within distance D of each other on the same diagonal.

4.3 BLAST 73

seed residue pair

=~ HSP with score at least .S,

i
region confined by .\,

Fig. 4.9 A scenario of the gap extensions in the dynamic-programming matrix confined by the
parameter X,. -

score found so far. The gapped extension for a selected HSP starts from a seed
residue pair, which is a central residue pair of the highest-scoring length-11 segment
pair along the HSP. If the HSP is shorter than 11, its central residue pair is chosen as
the seed. Then the gapped extension proceeds both forward and backward through
the dynamic-programming matrix confined by the parameter X, (see Figure 4.9).

4.3.3 PSI-BLAST

PSI-BLAST runs BLAST iteratively with an updated scoring matrix generated auto-
matically. In each iteration, PSI-BLAST constructs a position specific score matrix
(PSSM) of dimension £ x 20 from a multiple alignment of the highest-scoring seg-
ments with the query segment of length £. The constructed PSSM is then used to
score the segment pairs for the next iteration. It has been shown that this iterative
approach is often more sensitive to weak but biologically relevant sequence similar-
ities.

PSI-BLAST collects, from the BLAST output, all HSPs with E-value below a
threshold, say 0.01, and uses the query sequence as a template to construct a mul-
tiple alignment. For those selected HSPs, all database sequence segments that are
identical to the query segment are discarded, and only one copy is kept for those
database sequence segments with at least 98% identities. In fact, users can specify
the maximum number of database sequence segments to be included in the multiple
alignment. In case the number of HSPs with E-value below a threshold exceeds the
maximum number, only those top ones are reported. A sample multiple alignment
is given below:

query: GVDIIIMGSHGKTINLKEILLGSVTENVIKKSNKPVLVVK

seql: GADVVVIGSR-NPSISTHLLGSNASSVIRHANLPVLVVR
seq2: PAHMIIIASH-RPDITTYLLGSNAAAVVRHAECSVLVVR
seq3: QAGIVVLGTVGRTIGISAAFLGNTAEQVIDHLRCDLLVIK

74 . 4 Homology Search Tools

If all segments in the alignment are given the same weight, then a small set of
more divergent sequences might be suppressed by a much larger set of closely re-
lated sequences. To avoid such a bias, PSI-BLAST assigns various sequence weights
by a sequence weighting method. Thus, to calculate the observed residue frequen-
cies of a column of a multiple alignment, PSI-BLAST takes its weighted frequencies
into account. In Chapter 8, we shall discuss the theoretical foundation for generating
scoring matrices from a given multiple alignment.

4.4 BLAT

BLAT is short for “BLAST-like alignment tool.” It is often used to search for
database sequences that are closely related to the query sequences. For DNA se-
quences, it aims to find those sequences of length 25 bp or more and with at least
95% similarity. For protein sequences, it finds those sequences of length 20 residues
or more and with at least 80% similarity.

A desirable feature is that BLAT builds an index of the whole database and keeps
it in memory. The index consists of non-overlapping K-mers and their positions
in the database. It excludes those K-mers that are heavily involved in repeats. DNA
BLAT sets K to 11, and protein BLAT sets K to 4. The index requires a few gigabytes
of RAM and is affordable for many users. This feature lets BLAT scan linearly
through the query sequence, rather than scan linearly through the database.

BLAT builds a list of hits by looking up each overlapping K-mer of the query se-
quence in the index (see Figure 4.10). The hits can be single perfect word matches or
near perfect word matches. The near perfect mismatch option allows one mismatch
in a hit. Given a K-mer, there are K x (|X| — 1) other possible K-mers that match
it in all but one position, where |Z| is the alphabet size. Therefore, the near perfect
mismatch option would require K x (JX] — 1) + 1 lookups per K-mer of the query
sequences.

database } } 1 1

Fig. 4.10 The index consists of non-overlapping K-mers in the database, and each overlapping
K-mer of the query sequence is looked up for hits.

4.5 PatternHunter 75

BLAT identifies homologous regions of the database by clumping hits as follows.
The hits are distributed into buckets of 64k according to their database positions. In
each bucket, hits are bundled into a clump if they are within the gap limit on the
diagonal and the window limit on the database coordinate. To smooth the boundary
cut, the hits and clumps within the window limit of the next bucket are passed on
for possible clumping and extension. If a clump contains a certain amount of hits,
then it defines a region of the database that are homologous to the query sequence.
If two homologous regions of the database are within 300 nucleotides or 100 amino
acids, they are merged as one. Finally, each homologous region is flanked with a
few hundred additional residues on both sides.

The alignment stage of BLAT delivers alignments in the homologous regions
found in the clumping process. The alignment procedures for nucleotide sequences
and protein sequences are different. Both of them work well for aligning sequences
that are closely related.

For nucleotide alignment, the alignment procedure works as follows. It stretches
each K-mer as far as possible allowing no mismatches. An extended K-mer forms a
hit if it is unique or exceeds a certain length. Overlapping hits are merged together.
To bridge the gaps among hits, a recursive procedure is employed. A recursion con-
tinues if it finds no additional hits using a smaller K or the gap is no more than five
nucleotides.

For protein alignment, the alignment procedure works as follows. The hits are
extended into high-scoring segment pairs (HSPs) by giving a bonus score +2 to
a match and penalizing a mismatch by —1. Let H; and H, be two HSPs that are
non-overlapping in both the database and the query sequences, and assume that H
precedes H,. An edge is added to connect from H; to H,, where the edge weight is
the score of H, minus the gap cost based on the distance between H, and H,. For
those overlapping HSPs, a cutting point is chosen to maximize the score of the joint
HSP. Then a dynamic-programming method is used to find the maximal-scoring
path, i.e., the maximal-scoring alignment, in the graph one by one until all HSPs are
reported in some alignment.

4.5 PatternHunter

As discussed in Section 4.3, BLAST computes HSPs by extending so-called “hits”
or “seeds” between the query sequence and the database sequence. The seeds used
by BLAST are short contiguous word matches. Some homologous regions might be
missed if they do not contain any seed.

An advanced homology search program named PatternHunter has been devel-
oped to enhance the sensitivity by finding short word matches under a spaced seed
model. A spaced seed is represented as a binary string of length I, where a “1” bit
at a position means that a base match is required at the position, and a “x” bit at a
position means that either a base match or mismatch is acceptable at the position.
The number of 1 bits in a spaced seed is the weight of the seed. For example, the

76 . 4 Homology Search Tools

words ACGTC and ATGAC form a word match under spaced seed 1+1x1, but not
under 11+x1. Note that BLAST simply uses a consecutive model that consists of
consecutive 1s,suchas 11111.

In general, a spaced seed model shares fewer 1s with any of its shifted copies
than the contiguous one. Define the number of overlapping s between a model and
its shifted copy as the number of 1s in the shifted copy that correspond to 1s in the
model. The number of non-overlapping 1s between a model and its shifted copy
is the weight of the model minus the number of overlapping Is. If there are more
non-overlapping 1s between the model and its shifted copy, then the conditional
probability of having another hit given one hit is smaller, resulting in higher sen-
sitivity. For rigorous analysis of the hit probabilities of spaced seeds, the reader is
referred to Chapter 6.

A model of length [has [— 1 shifted copies. For a model 7 of length /, the sum
of overlapping hit probabilities between the model and each of its shifted copies,
¢(m, p), is calculated by the equation

-1
o(m,p) =Y p, (4.1
i=1
where p is the similarity level and n; denotes the number of non-overlapping Is
between the model 7 and its i shifted copy. Figure 4.11 computes ¢(7,p) for
T=1x11~1.

Both empirical and analytical studies suggest that, among all the models of fixed
length and weight, a model is more sensitive if it has a smaller sum of overlapping
hit probabilities. A model of length [and weight w is an optimal model if its ¢ value
is minimum among all models of length / and weight w. For example, the spaced
seed model 111x1+%1%1%x11x111 used in PatternHunter is an optimal one for
length 18 and weight 11 with similarity level p =0.7.

In order to calculate the value of ¢ for a spaced seed model, we need to count
the number of non-overlapping 1s between the model and each of its shifted copies,
which can be computed by subtracting the number of overlapping 1s from the weight
w. This can be done by a straightforward dynamic-programming method, which
takes O(£?) time to compute ¢ for any model of length £. By observing that at most
O(?) bit overlaps differ for two models with only one pair of » and 1 swapped, one

i[i"" shifted copy [non-overlapping 1s[overlapping hit probability
0]1+11x1

1] 1%11+1 3 P

2| 1x11%1 2 P?

3 1x11x1 2 P?

4 1x11#1 4 P

5 14111 3 e

Fig. 4.11 Calculation of the sum of overlapping hit probabilities between the model & and each of
its shifted copies, ¢ (7, p) = p> + p? + p> + p* + p?, for x=1+11x1.

4.5 PatternHunter 77

can develop an O(¢) time algorithm for updating the numbers of non-overlapping 1s
for a swapped model. This suggests a practical computation method for evaluating
¢ values of all models by orderly swapping one pair of * and 1 at a time.

Given a spaced seed model, how can one find all the hits? Recall that only those
1s account for a match. One way is to employ a hash table like Figure 4.1 for exact
word matches but use a spaced index instead of a contiguous index. Let the spaced
seed model be of length ¢ and weight w. For DNA sequences, a hash table of size 4"
is initialized. Then we scan the sequence with a window of size £ from left to right.
We extract the residues corresponding to those 1s as the index of the window (see
Figure 4.12).

Once the hash table is built, the lookup can be done in a similar way. Indeed, one
can scan the other sequence with a window of size £ from left to right and extract
the residues corresponding to those 1s as the index for looking up the hash table for
hits.

Hits are extended diagonally in both sides until the score drops by a certain
amount. Those extended hits with scores exceeding a threshold are collected as

123 45678 910

G,&:TMC ATCTT

e
000000 (0) AAA

001101 (13) | ATC
001110 (14) | ATG
001111 (15) | ATT —{6]

010001 (17) | CAC —{5

010100 (20) A CCT —»{4]

> 100001 (33) | GAC —»/ 1]

110100 (52) | TCA —»{3]

110111 (55) TCT —{ 7]

111111 (63) | TTT

Fig. 4.12 A hash table for GATCCATCTT under a weight three model 11+1.

78 . 4 Homology Search Tools

high-scoring segment pairs (HSPs). As for the gap extension of HSPs, a red-black
tree with diagonals as the key is employed to manipulate the extension process effi-
ciently.

4.6 Bibliographic Notes and Further Reading

Twenty years ago, it would have been a legend to find similarities between two se-
quences. However, nowadays it would be a great surprise if we cannot find similari-
ties between a newly sequenced biomolecular sequence and the GenBank database.
FASTA and BLAST were the ones that boosted this historical change. In Table C.2
of Appendix C, we compile a list of homology search tools.

4.1

The first linear-time suffix tree was given by Weiner [202] in 1973. A space-
efficient linear-time construction was proposed by McCreight [135] in 1976. An on-
line linear-time construction was presented by Ukkonen [191] in 1995. A review of
these three linear-time algorithms was given by Giegerich and Kurtz [75]. Gusfield’s
book [85] gave a very detailed explanation of suffix trees and their applications.

Suffix arrays were proposed by Manber and Myers [134] in 1991.

4.2

The FASTA program was proposed by Pearson and Lipman [161] in 1988. It im-
proved the sensitivity of the FASTP program [128] by joining several initial regions
if their scores pass a certain threshold.

4.3

The original BLAST paper by Altschul et al. [7] was the most cited paper pub-
lished in the 1990s. The first version of BLAST generates ungapped alignments,
whereas BLAST 2.0 [8] considers gapped alignments as well as position-specific
scoring schemes. The idea of seeking multiple hits on the same diagonal was first
proposed by Wilbur and Lipman in 1983 [204]. The book of Korf, Yandell, and
Bedell [116] gave a full account of the BLAST tool. It gave a clear understand-
ing of BLAST programs and demonstrated how to use BLAST for taking the full
advantage.

44

The UCSC Genome Browser contains a large collection of genomes [104].
BLAT [109] is used to map the query sequence to the genome.

4.5

4.6 Bibliographic Notes and Further Reading 79

Several variants of PatternHunter [131] are also available to the public. For in-
stance, PatternHunter I [123] improved the sensitivity even further by using multi-
ple spaced seeds, and tPatternHunter [112] was designed for doing protein-protein,
translated protein-DNA, and translated DNA-DNA homology searches. A new ver-
sion of BLASTZ also adapted the idea of spaced models [177] by allowing one
transition (A~G, G-A, C-T or T-C) in any position of a seed.

Some related but different spaced approaches have been considered by others.
Califano and Rigoutsos [37] introduced a new index generating mechanism where
k-tuples are formed by concatenating non-contiguous subsequences that are spread
over a large portion of the sequence of interest. The first stage of the multiple fil-
tration approach proposed by Pevzner and Waterman [167] uses a new technique to
preselect similar m-tuples that allow a few number of mismatches. Buhler [33] uses
locality-sensitive hashing [96] to find K-mers that differ by no more than a certain
number of substitutions.

