Simplex Algorithm: Geometric view

Linear optimization problem

$$\max\{c^T x \mid Ax \le b, x \in \mathbb{R}^n\}$$
(LP)

2001

Simplex-Algorithm (Dantzig 1947)

- 1. Find a vertex of P.
- 2. Proceed from vertex to vertex along edges of *P* such that the objective function $z = c^T x$ increases.
- 3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which *z* is unbounded.

Basic solutions

- $Ax \leq b$, $A \in \mathbb{R}^{m \times n}$, rank(A) = n.
- $M = \{1, ..., m\}$ row indices, $N = \{1, ..., n\}$ column indices
- For $I \subseteq M, J \subseteq N$ let A_{IJ} denote the submatrix of A defined by the rows in I and the columns in J.
- $I \subseteq M$, |I| = n is called a *basis of A* iff $A_{I*} = A_{IN}$ is non-singular.
- In this case, $A_{l_{k}}^{-1}b_{l}$, where b_{l} is the subvector of b defined by the indices in l, is called a basic solution.
- If $x = A_{I_*}^{-1}b_I$ satisfies $Ax \le b$, then x called a *basic feasible solution* and I is called a *feasible basis*.

Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, where rank(A) = n, a vector $v \in \mathbb{R}^n$ is a vertex of P if and only if it is a basic feasible solution of $Ax \le b$, for some basis I of A.

For any $c \in \mathbb{R}^n$, either the maximum value of $z = c^T x$ for $x \in P$ is attained at a vertex of P or z is unbounded on P.

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

- Suppose rank(*A*) = *n* (otherwise apply Gaussian elimination).
- Suppose *I* is a feasible basis with corresponding vertex $v = A_{l*}^{-1}b_l$.
- Compute $u^T \stackrel{\text{def}}{=} c^T A_{l*}^{-1}$ (vector of *n* components indexed by *l*).
- If $u \ge 0$, then v is an optimal solution, because for each feasible solution x

$$c^T x = u^T A_{I*} x \leq u^T b_I = u^T A_{I*} v = c^T v.$$

- If *u* ≥ 0, choose *i* ∈ *I* such that *u_i* < 0 and define the direction *d* ^{def} = −*A*⁻¹_{*l**}*e_i*, where *e_i* is the *i*-th unit basis vector in ℝ^{*l*}.
- Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If $Ad \leq 0$, the largest $\lambda \geq 0$ for which $v + \lambda d$ is still feasible is

$$\lambda^{*} = \min\{\frac{b_{\rho} - A_{\rho*}v}{A_{\rho*}d} \mid \rho \in \{1, \dots, m\}, A_{\rho*}d > 0\}.$$
 (PIV)

Let this minimum be attained at index *k*. Then $k \notin I$ because $A_{I*}d = -e_i \leq 0$.

Define $I' = (I \setminus \{i\}) \cup \{k\}$, which corresponds to the vertex $v + \lambda^* d$.

Replace I by I' and repeat the iteration.

2. If $Ad \leq 0$, then $v + \lambda d$ is feasible, for all $\lambda \geq 0$. Moreover,

$$c^{T}d = -c^{T}A_{l*}^{-1}e_{l} = -u^{T}e_{l} = -u_{l} > 0.$$

Thus the objective function can be increased along *d* to infinity and the problem is unbounded.

Termination and complexity

- The method terminates if the indices *i* and *k* are chosen in the right way (such choices are called *pivoting rules*).
- Following the rule of Bland, one can choose the smallest *i* such that u_i < 0 and the smallest *k* attaining the minimum in (PIV).
- For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in m+n (e.g. Klee-Minty cubes).
- Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex : Phase I

• In order to find an *initial feasible basis*, consider the auxiliary linear program

$$\max\{y \mid Ax - by \le 0, -y \le 0, y \le 1\},$$
 (Aux)

where y is a new variable.

- Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing I = K ∪ {m + 1}. The corresponding basic feasible solution is 0.
- Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the
 optimum value has to be 1.
- If I' is the final feasible basis of (Aux), then K' = I' \ {m+2} can be used as an initial feasible basis for (LP).