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Simplex Algorithm: Geometric view

Linear optimization problem
max{cT x | Ax ≤ b,x ∈ Rn} (LP)

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of P.

2. Proceed from vertex to vertex along edges of P such that the objective function z = cT x increases.

3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and
along which z is unbounded.

Basic solutions

• Ax ≤ b, A ∈ Rm×n, rank (A) = n.

• M = {1, ... ,m} row indices, N = {1, ... ,n} column indices

• For I ⊆M,J ⊆ N let AIJ denote the submatrix of A defined by the rows in I and the columns in J.

• I ⊆M, |I| = n is called a basis of A iff AI∗ = AIN is non-singular.

• In this case, A−1
I∗ bI , where bI is the subvector of b defined by the indices in I, is called a basic solution.

• If x = A−1
I∗ bI satisfies Ax ≤ b, then x called a basic feasible solution and I is called a feasible basis.

Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron P = {x ∈ Rn | Ax ≤ b}, where rank(A) = n, a vector v ∈ Rn is a vertex of P if
and only if it is a basic feasible solution of Ax ≤ b, for some basis I of A.

For any c ∈Rn, either the maximum value of z = cT x for x ∈ P is attained at a vertex of P or z is unbounded on
P.

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

• Suppose rank(A) = n (otherwise apply Gaussian elimination).

• Suppose I is a feasible basis with corresponding vertex v = A−1
I∗ bI .

• Compute uT def= cT A−1
I∗ (vector of n components indexed by I).

• If u ≥ 0, then v is an optimal solution, because for each feasible solution x

cT x = uT AI∗x ≤ uT bI = uT AI∗v = cT v .
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• If u 6≥ 0, choose i ∈ I such that ui < 0 and define the direction d def= −A−1
I∗ ei , where ei is the i-th unit basis

vector in RI .

• Next increase the objective function value by going from v in direction d , while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If Ad 6≤ 0, the largest λ≥ 0 for which v + λd is still feasible is

λ
∗ = min{bp−Ap∗v

Ap∗d
| p ∈ {1, ... ,m},Ap∗d > 0}. (PIV)

Let this minimum be attained at index k . Then k 6∈ I because AI∗d =−ei ≤ 0.

Define I′ = (I \{i})∪{k}, which corresponds to the vertex v + λ∗d .

Replace I by I′ and repeat the iteration.

2. If Ad ≤ 0, then v + λd is feasible, for all λ≥ 0. Moreover,

cT d =−cT A−1
I∗ ei =−uT ei =−ui > 0.

Thus the objective function can be increased along d to infinity and the problem is unbounded.

Termination and complexity

• The method terminates if the indices i and k are chosen in the right way (such choices are called pivoting
rules).

• Following the rule of Bland, one can choose the smallest i such that ui < 0 and the smallest k attaining
the minimum in (PIV).

• For most known pivoting rules, sequences of examples have been constructed such that the number of
iterations is exponential in m + n (e.g. Klee-Minty cubes).

• Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to
work very well in practice.

Simplex : Phase I

• In order to find an initial feasible basis, consider the auxiliary linear program

max{y | Ax−by ≤ 0, −y ≤ 0, y ≤ 1}, (Aux)

where y is a new variable.

• Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing I = K ∪ {m + 1}. The
corresponding basic feasible solution is 0.

• Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the
optimum value has to be 1.

• If I′ is the final feasible basis of (Aux), then K ′ = I′ \ {m + 2} can be used as an initial feasible basis for
(LP).


