Prof. Dr. Alexander Bockmayr, Prof. Dr. Knut Reinert, Sandro Andreotti

December 10, 2010

Discrete Mathematics for Bioinformatics (P1) WS 2010/11

Exercises 7

1. Convexity of LP (Niveau I)

A set S is convex if x_1 and $x_2 \in S$ implies that $x = \lambda x_1 + (1 - \lambda) x_2 \in S$ for $0 \le \lambda \le 1$. Prove the following two Theorems:

- (a) A hyperplane is a convex set.
- (b) Consider the LP:

$$\begin{array}{rcl} \max & c^T x \\ \text{w.r.t.} & Ax &\leq b \\ & x &\geq 0 \end{array}$$

Let x_1 and x_2 be two feasible solutions. Show that, if $c^T x_1 = k$ and $c^T x_2 = k$ then $c^T x_i = k$ for every point x_i on the line joining x_1 and x_2 .

2. Bases and Basic Solutions (Niveau I) Consider the polyhedron $B \subset \mathbb{R}^2$ defined by the system of linear ineq

Consider the polyhedron $P \subset \mathbb{R}^2$ defined by the system of linear inequalities

$$x_1 + x_2 \le 4, \ 0 \le x_1 \le 4, \ 0 \le x_2 \le 2$$
 (*)

- (a) Write (*) in the form $Ax \leq b$, for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.
- (b) Determine the bases of (*) and the corresponding basic solutions.
- (c) Which of them are feasible?
- (d) Give for each vertex of P the corresponding feasible bases.

3. Simplex Algorithm (Niveau I)

A farmer owns 100 acres of land. He can cultivate potatoes or corn. Given the data

	Potatoes	Corn	Available
Cultivation costs (in k€/a.)	1	2	110 k€
Working days per a.	1	4	160 working days
Profit (in $k \in /a$.)	1	3	

what should he plant in order to maximize his income ?

- (a) Model the problem as a linear optimization problem.
- (b) Solve it by applying the Simplex method (You may skip phase I and start with solution 0).