Complexity of linear programming

Theorem (Khachyian 79) The following problems are solvable in polynomial time:

- Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^{m}$, decide whether $A x \leq b$ has a solution $x \in \mathbb{Q}^{n}$, and if so, find one.
- (Linear programming problem) Given a matrix $A \in \mathbb{Q}^{m \times n}$ and vectors $b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}$, decide whether $\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Q}^{n}\right\}$ is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is unbounded, find a feasible solution x_{0}, and find a vector $d \in \mathbb{Q}^{n}$ with $A d \leq 0$ and $c^{T} d>0$.

Ellipsoids

- A set $E \subseteq \mathbb{R}^{n}$ is called an ellipsoid if there exists a vector $c \in \mathbb{R}^{n}$, called the center of E, and a positive definite matrix $D \in \mathbb{R}^{n \times n}$ such that

$$
E=E(c, D)=\left\{x \in \mathbb{R}^{n} \mid(x-c)^{T} D^{-1}(x-c) \leq 1\right\} .
$$

- A symmetric matrix D is positive definite, if $x^{T} D x>0$, for all $x \in \mathbb{R}^{n} \backslash\{0\}$. Any positive definite matrix is non-singular, and D^{-1} is again positive definite.
- The unit ball $B(0,1)=\left\{x \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}$ around 0 in the Euclidean norm is identical with the ellipsoid $E(0, I)$.
- For every positive definite matrix D there exists a unique positive definite matrix $D^{1 / 2}$ such that $D=$ $D^{1 / 2} D^{1 / 2}$.
- It follows that $E(c, D)=D^{1 / 2} B(0,1)+c \rightsquigarrow$ every ellipsoid is the image of the unit ball under a bijective affine transformation.

Theorem

Let $E_{t}=E\left(c_{t}, D_{t}\right) \subseteq \mathbb{R}^{n}$ be an ellipsoid and let $a \in \mathbb{R}^{n}$ be a non-zero vector.
Consider the halfspace $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq a^{T} c_{t}\right\}$ defined by the hyperplane in direction a through c_{t}.
Let $c_{t+1}=c_{t}-\frac{1}{n+1} d_{t}$ and $D_{t+1}=\frac{n^{2}}{n^{2}-1}\left(D_{t}-\frac{2}{n+1} d_{t} d_{t}^{\top}\right)$, where $d_{t}=\frac{1}{\sqrt{a^{T} D_{t} a}} D_{t} a$.
Then $E_{t+1}=E\left(c_{t+1}, D_{t+1}\right)$ is an ellipsoid such that

- $E_{t} \cap H \subset E_{t+1}$
- $\operatorname{vol}\left(E_{t+1}\right)<e^{-\frac{1}{2 n}} \operatorname{vol}\left(E_{t}\right)$

Ellipsoid method

- Consider the polyhedron $P=\left\{x \in \mathbb{F}^{n} \mid A x \leq b\right\}, \quad A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$, and assume that P is either empty or bounded and full-dimensional.
- Construct a sequence of ellipsoids $E_{t}, t \in \mathbb{N}$, such that all E_{t} contain P and such that vol($\left.E_{t}\right)$ gets smaller and smaller.
- Suppose we have computed the ellipsoid $E_{t}=E\left(c_{t}, D_{t}\right)$.
- If $c_{t} \in P$, then P is non-empty and the algorithm terminates.
- If $c_{t} \notin P$, there exists an inequality $a^{T} x \leq \beta$ in the system $A x \leq b$ such that $a^{T} c_{t}>\beta$.
- It follows that P is contained in the intersection $E_{t} \cap H$ of E_{t} with the half-space $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq a^{T} c_{t}\right\}$.
- Now we can construct a new ellipsoid E_{t+1} containing the half-ellipsoid $H \cap E_{t}$ such that the volume of E_{t+1} is only a fraction of the volume of E_{t}.

Overview of constraint solving problems

Satisfiability	over \mathbb{Q}	over \mathbb{Z}	over \mathbb{N}
Linear equations	polynomial	polynomial	NP-complete
Linear inequalities	polynomial	NP-complete	NP-complete

Satisfiability	over \mathbb{R}	over \mathbb{Z}
Linear constraints	polynomial	NP-complete
Non-linear constraints	decidable	undecidable

Duality

- Primal problem: $z_{P}=\max \left\{\mathbf{c}^{\boldsymbol{\top}} x \mid \quad A x \leq b, \quad x \in \mathbb{R}^{n}\right\}$
- Dual problem: $\quad w_{D}=\min \left\{b^{T} u \mid \quad A^{T} u=\mathbf{c}, \quad u \geq 0\right\}$

General form

$c \mid c$	(D)		
min	$c^{T} x$	max	$u^{T} b$
w.r.t.	$A_{i *} x \geq b_{i}, \quad i \in M_{1}$	w.r.t	$u_{i} \geq 0$,
	$A_{i *} x \leq b_{i}, \quad i \in M_{2}$	$i \in M_{1}$	
	$A_{i *} x=b_{i}, \quad i \in M_{3}$	$u_{i} \leq 0, \quad i \in M_{2}$	
	$x_{j} \geq 0, \quad j \in N_{1}$	u_{i} free, $\quad i \in M_{3}$	
	$x_{j} \leq 0, \quad j \in N_{2}$	$\left(A_{* j}\right)^{T} u \leq c_{j}, \quad j \in N_{1}$	
	x_{j} free, $\quad j \in N_{3}$	$\left(A_{* j}\right)^{T} u \geq c_{j}, \quad j \in N_{2}$	
		$\left(A_{* j}\right)^{T} u=c_{j}, \quad j \in N_{3}$	

Duality theorems

- Weak duality: If x^{*} is primal feasible and u^{*} is dual feasible, then

$$
c^{T} x^{*} \leq z_{P} \leq w_{D} \leq b^{T} u^{*}
$$

- Strong duality
- If (P) and (D) both have feasible solutions, then both programs have optimal solutions and the optimum values of the objective functions are equal.
- If one of the programs (P) or (D) has no feasible solution, then the other is either unbounded or has no feasible solution.
- If one of the programs (P) or (D) is unbounded, then the other has no feasible solution.
- Only four possibilities:

1. z_{P} and w_{D} are both finite and equal.
2. $z_{P}=+\infty$ and (D) is infeasible.
3. $w_{D}=-\infty$ and (P) is infeasible.
4. (P) and (D) are both infeasible.

Maximum flow and duality

- Primal problem

$$
\left.\begin{array}{cl}
\max & \sum_{e: \text { source }(e)=s} x_{e}-\sum_{e: \text { arget }(e)=s} x_{e} \\
\text { s.t. } & \sum_{e \cdot \operatorname{target}(e)=v} x_{e}-\sum_{e: \text { source }(e)=v} x_{e}=0,
\end{array} \quad \forall v \in V \backslash\{s, t\}\right\}
$$

- Dual problem

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} y_{e} & \\
& & \\
\text { s.t. } & z_{w}-z_{v}+y_{e} \geq 0, \quad \forall e=(v, w) \in E \\
& z_{s}=1, z_{t}=0 & \\
& y_{e} \geq 0, \quad \forall e \in E
\end{array}
$$

Maximum flow and duality

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the dual.
- Define $S=\left\{v \in V \mid z_{v}^{*}>0\right\}$ and $T=V \backslash S$.
- (S, T) is a minimum cut.
- Max-flow min-cut theorem is a special case of linear programming duality.

Integer Linear Optimization (ILP)

- $z_{\mathbb{P}}=\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Z}^{n}\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- $z_{L P}=\max \left\{c^{\top} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\}$
- $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$
linear (programming) relaxation
real feasible points
- $S=\left\{x \in \mathbb{Z}^{n} \mid A x \leq b\right\}=P \cap \mathbb{Z}^{n}$ integer feasible points
- Basic properties
- If $P=\emptyset$, then $S=\emptyset$.
- If $z_{L_{P}}$ is finite, then $S=\emptyset$ or $z_{\mid P} \leq z_{L P}$ is finite.
- If $z_{l P}=\infty$, then $S=\emptyset$ or $z_{\mathbb{P}}=\infty$.

Integer hull

- $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, S=\left\{x \in \mathbb{Z}^{n} \mid A x \leq b\right\}=P \cap \mathbb{Z}^{n}$
- $P_{l}=\operatorname{conv}(S) \quad$ integer hull
- Theorem: P_{l} is again a polyhedron
- Vertices of P_{I} belong to S
- $\max \left\{c^{\top} x \mid x \in S\right\}=\max \left\{c^{\top} x \mid x \in \operatorname{conv}(S)\right\}$
\rightsquigarrow reduce integer linear optimization to linear optimization?

Cutting planes

$\operatorname{conv}(S)$ is very hard to compute \rightsquigarrow approximation by cutting planes

- Solve the linear relaxation

$$
\max \left\{c^{\top} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\}
$$

and compute a basic feasible solution x^{*}.

- If $x^{*} \in \mathbb{Z}^{n}$, the integer linear program has been solved.
- If $x^{*} \notin \mathbb{Z}^{n}$, generate a culting plane $a^{T} x \leq \beta$, which is satisfied by all integer points in P, but which cuts off the fractional vertex x^{*} of P.
- Add the inequality $a^{T} x \leq \beta$ to the system $A x \leq b$ and solve the relaxation again.

References

- J. Matousek, B. Gärtner: Understanding and using linear programming, Springer, 2007.
- B. Kolman and R. E. Beck: Elementary linear programming with applications (Second Edition), Elsevier, 1995, http://www.sciencedirect.com/science/book/9780124179103
- D. Bertsimas, J. N. Tsitsiklis: Introduction to linear programming, Athena Scientific, 1997.
- M. Grötschel, L. Lovász, A. Schrijver: Geometric algorithms and combinatorial optimization, Springer, 1988.

