
Discrete Math for Bioinformatics WS 10/11, by A. Bockmayr/K. Reinert, 13. Dezember 2010, 17:30 2001

Complexity of linear programming

Theorem (Khachyian 79) The following problems are solvable in polynomial time:

• Given a matrix A ∈Qm×n and a vector b ∈Qm, decide whether Ax ≤ b has a solution x ∈Qn, and if so,
find one.

• (Linear programming problem) Given a matrix A ∈ Qm×n and vectors b ∈ Qm,c ∈ Qn, decide whether
max{cT x | Ax ≤ b,x ∈Qn} is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is
unbounded, find a feasible solution x0, and find a vector d ∈Qn with Ad ≤ 0 and cT d > 0.

Ellipsoids

• A set E ⊆ Rn is called an ellipsoid if there exists a vector c ∈ Rn, called the center of E , and a positive
definite matrix D ∈ Rn×n such that

E = E(c,D) = {x ∈ Rn | (x− c)T D−1(x− c)≤ 1}.

• A symmetric matrix D is positive definite, if xT Dx > 0, for all x ∈ Rn \{0}. Any positive definite matrix is
non-singular, and D−1 is again positive definite.

• The unit ball B(0,1) = {x ∈ Rn | x2
1 + · · · + x2

n ≤ 1} around 0 in the Euclidean norm is identical with the
ellipsoid E(0, I).

• For every positive definite matrix D there exists a unique positive definite matrix D1/2 such that D =
D1/2D1/2.

• It follows that E(c,D) = D1/2B(0,1)+c every ellipsoid is the image of the unit ball under a bijective affine
transformation.

Theorem

Let Et = E(ct ,Dt )⊆ Rn be an ellipsoid and let a ∈ Rn be a non-zero vector.

Consider the halfspace H = {x ∈ Rn | aT x ≤ aT ct} defined by the hyperplane in direction a through ct .

Let ct+1 = ct − 1
n+1 dt and Dt+1 = n2

n2−1 (Dt − 2
n+1 dt d t

T ), where dt = 1√
aT Dt a

Dta.

Then Et+1 = E(ct+1,Dt+1) is an ellipsoid such that

• Et ∩H ⊂ Et+1

• vol(Et+1) < e−
1

2n vol(Et ) c
t

H

E
t

E
t+1

P

c t+1

Ellipsoid method

• Consider the polyhedron P = {x ∈ Fn | Ax ≤ b}, A ∈ Zm×n,b ∈ Zm, and assume that P is either empty
or bounded and full-dimensional.

• Construct a sequence of ellipsoids Et , t ∈ N, such that all Et contain P and such that vol(Et ) gets smaller
and smaller.
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• Suppose we have computed the ellipsoid Et = E(ct ,Dt ).

– If ct ∈ P, then P is non-empty and the algorithm terminates.

– If ct 6∈ P, there exists an inequality aT x ≤ β in the system Ax ≤ b such that aT ct > β.

• It follows that P is contained in the intersection Et ∩H of Et with the half-space H = {x ∈Rn | aT x ≤ aT ct}.

• Now we can construct a new ellipsoid Et+1 containing the half-ellipsoid H∩Et such that the volume of Et+1

is only a fraction of the volume of Et .

Overview of constraint solving problems

Satisfiability over Q over Z over N
Linear equations polynomial polynomial NP-complete

Linear inequalities polynomial NP-complete NP-complete

Satisfiability over R over Z
Linear constraints polynomial NP-complete

Non-linear constraints decidable undecidable

Duality

• Primal problem: zP = max{cTx | Ax ≤ b, x ∈ Rn} (P)

• Dual problem: wD = min{bT u | AT u = c, u ≥ 0} (D)

General form
(P) (D)

min cT x max uT b
w.r.t. Ai∗x ≥ bi , i ∈M1 w.r.t ui ≥ 0, i ∈M1

Ai∗x ≤ bi , i ∈M2 ui ≤ 0, i ∈M2

Ai∗x = bi , i ∈M3 ui free, i ∈M3

xj ≥ 0, j ∈ N1 (A∗j )T u ≤ cj , j ∈ N1

xj ≤ 0, j ∈ N2 (A∗j )T u ≥ cj , j ∈ N2

xj free, j ∈ N3 (A∗j )T u = cj , j ∈ N3

Duality theorems

• Weak duality: If x∗ is primal feasible and u∗ is dual feasible, then

cT x∗ ≤ zP ≤ wD ≤ bT u∗.

• Strong duality

– If (P) and (D) both have feasible solutions, then both programs have optimal solutions and the opti-
mum values of the objective functions are equal.

– If one of the programs (P) or (D) has no feasible solution, then the other is either unbounded or has
no feasible solution.

– If one of the programs (P) or (D) is unbounded, then the other has no feasible solution.
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• Only four possibilities:

1. zP and wD are both finite and equal.

2. zP = +∞ and (D) is infeasible.

3. wD =−∞ and (P) is infeasible.

4. (P) and (D) are both infeasible.

Maximum flow and duality

• Primal problem

max ∑
e:source(e)=s

xe− ∑
e:target(e)=s

xe

s.t. ∑
e:target(e)=v

xe− ∑
e:source(e)=v

xe = 0, ∀v ∈ V \{s, t}

0≤ xe ≤ ce, ∀e ∈ E

• Dual problem

min ∑
e∈E

ceye

s.t. zw − zv + ye ≥ 0, ∀e = (v ,w) ∈ E

zs = 1,zt = 0

ye ≥ 0, ∀e ∈ E

Maximum flow and duality (2)

• Let (y∗,z∗) be an optimal solution of the dual.

• Define S = {v ∈ V | z∗v > 0} and T = V \S.

• (S,T ) is a minimum cut.

• Max-flow min-cut theorem is a special case of linear programming duality.

Integer Linear Optimization (ILP)

• zIP = max{cT x | Ax ≤ b,x ∈ Zn}, A ∈ Rm×n, b ∈ Rm

• zLP = max{cT x | Ax ≤ b,x ∈ Rn} linear (programming) relaxation

• P = {x ∈ Rn | Ax ≤ b} real feasible points

• S = {x ∈ Zn | Ax ≤ b} = P ∩Zn integer feasible points

• Basic properties

– If P = /0, then S = /0.

– If zLP is finite, then S = /0 or zIP ≤ zLP is finite.

– If zLP = ∞, then S = /0 or zIP = ∞.



2004 Linear Programming, by Alexander Bockmayr, 13. Dezember 2010, 17:30

Integer hull

• P = {x ∈ Rn | Ax ≤ b}, S = {x ∈ Zn | Ax ≤ b} = P ∩Zn

• PI = conv (S) integer hull

• Theorem: PI is again a polyhedron

• Vertices of PI belong to S

• max{cT x | x ∈ S} = max{cT x | x ∈ conv (S)}

 reduce integer linear optimization to linear optimization?

P
PI

Cutting planes

conv (S) is very hard to compute approximation by cutting planes

• Solve the linear relaxation
max{cT x | Ax ≤ b,x ∈ Rn}

and compute a basic feasible solution x∗.

• If x∗ ∈ Zn, the integer linear program has been solved.

• If x∗ 6∈ Zn, generate a cutting plane aT x ≤ β, which is satisfied by all integer points in P, but which cuts
off the fractional vertex x∗ of P.

• Add the inequality aT x ≤ β to the system Ax ≤ b and solve the relaxation again.

P PI

x*
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