Complexity of linear programming

Theorem (Khachyian 79) The following problems are solvable in polynomial time:

- Given a matrix A ∈ Q^{m×n} and a vector b ∈ Q^m, decide whether Ax ≤ b has a solution x ∈ Qⁿ, and if so, find one.
- (Linear programming problem) Given a matrix A ∈ Q^{m×n} and vectors b ∈ Q^m, c ∈ Qⁿ, decide whether max{c^Tx | Ax ≤ b, x ∈ Qⁿ} is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is unbounded, find a feasible solution x₀, and find a vector d ∈ Qⁿ with Ad ≤ 0 and c^Td > 0.

Ellipsoids

A set *E* ⊆ ℝⁿ is called an *ellipsoid* if there exists a vector *c* ∈ ℝⁿ, called the *center* of *E*, and a positive definite matrix *D* ∈ ℝ^{n×n} such that

$$E = E(c, D) = \{x \in \mathbb{R}^n \mid (x - c)^T D^{-1} (x - c) \le 1\}.$$

- A symmetric matrix *D* is *positive definite*, if x^TDx > 0, for all x ∈ ℝⁿ \ {0}. Any positive definite matrix is non-singular, and D⁻¹ is again positive definite.
- The unit ball $B(0,1) = \{x \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \le 1\}$ around 0 in the Euclidean norm is identical with the ellipsoid E(0, I).
- For every positive definite matrix *D* there exists a unique positive definite matrix $D^{1/2}$ such that $D = D^{1/2}D^{1/2}$.
- It follows that E(c, D) = D^{1/2}B(0, 1) + c → every ellipsoid is the image of the unit ball under a bijective affine transformation.

Theorem

Let $E_t = E(c_t, D_t) \subseteq \mathbb{R}^n$ be an ellipsoid and let $a \in \mathbb{R}^n$ be a non-zero vector.

Consider the halfspace $H = \{x \in \mathbb{R}^n \mid a^T x \le a^T c_t\}$ defined by the hyperplane in direction *a* through c_t .

Let $c_{t+1} = c_t - \frac{1}{n+1} d_t$ and $D_{t+1} = \frac{n^2}{n^2 - 1} (D_t - \frac{2}{n+1} d_t d_t^T)$, where $d_t = \frac{1}{\sqrt{a^T D_t a}} D_t a$.

Then $E_{t+1} = E(c_{t+1}, D_{t+1})$ is an ellipsoid such that

- $E_t \cap H \subset E_{t+1}$
- $vol(E_{t+1}) < e^{-\frac{1}{2n}} vol(E_t)$

Ellipsoid method

- Consider the polyhedron $P = \{x \in \mathbb{F}^n \mid Ax \le b\}, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$, and assume that P is either empty or bounded and full-dimensional.
- Construct a sequence of ellipsoids *E_t*, *t* ∈ N, such that all *E_t* contain *P* and such that *vol*(*E_t*) gets smaller and smaller.

- Suppose we have computed the ellipsoid $E_t = E(c_t, D_t)$.
 - If $c_t \in P$, then *P* is non-empty and the algorithm terminates.
 - If $c_t \notin P$, there exists an inequality $a^T x \leq \beta$ in the system $Ax \leq b$ such that $a^T c_t > \beta$.
- It follows that *P* is contained in the intersection $E_t \cap H$ of E_t with the half-space $H = \{x \in \mathbb{R}^n \mid a^T x \le a^T c_t\}$.
- Now we can construct a new ellipsoid *E*_{t+1} containing the half-ellipsoid *H*∩*E*_t such that the volume of *E*_{t+1} is only a fraction of the volume of *E*_t.

Overview of constraint solving problems

Satisfiability	over \mathbb{Q}	over $\mathbb Z$	over ℕ	
Linear equations	polynomial	polynomial	NP-complete	
Linear inequalities	polynomial	NP-complete	NP-complete	

Satisfiability	over ${\mathbb R}$	over $\mathbb Z$	
Linear constraints	polynomial	NP-complete	
Non-linear constraints	decidable	undecidable	

Duality

- Primal problem: $z_P = \max\{\mathbf{c}^{\mathsf{T}}x \mid Ax \leq b, x \in \mathbb{R}^n\}$ (P)
- Dual problem: $w_D = \min\{b^T u \mid A^T u = \mathbf{c}, u \ge 0\}$ (D)

General form

(P)		(D)			
min	c ^T x		max	и ^т b	
w.r.t.	$A_{i*}x \geq b_i$,	$i \in M_1$	w.r.t	$u_i \ge 0$,	$i \in M_1$
	$A_{i*}x \leq b_i,$	$i \in M_2$		$u_i \leq 0$,	$i \in M_2$
	$A_{i*}x=b_i,$	$i \in M_3$		<i>u_i</i> free,	$i \in M_3$
	$x_j \ge 0,$	$j \in N_1$		$(A_{*j})^T u \leq c_j,$	$j \in N_1$
	$x_j \leq 0,$	$j \in N_2$		$(A_{*j})^T u \geq c_j,$	$j \in N_2$
	<i>x_j</i> free,	$j \in N_3$		$(\boldsymbol{A}_{*j})^T \boldsymbol{U} = \boldsymbol{C}_j,$	$j \in N_3$

Duality theorems

• Weak duality: If x^* is primal feasible and u^* is dual feasible, then

$$c^T x^* \leq z_P \leq w_D \leq b^T u^*$$

- Strong duality
 - If (P) and (D) both have feasible solutions, then both programs have optimal solutions and the optimum values of the objective functions are equal.
 - If one of the programs (P) or (D) has no feasible solution, then the other is either unbounded or has no feasible solution.
 - If one of the programs (P) or (D) is unbounded, then the other has no feasible solution.

- Only four possibilities:
 - 1. z_P and w_D are both finite and equal.
 - 2. $z_P = +\infty$ and (D) is infeasible.
 - 3. $w_D = -\infty$ and (P) is infeasible.
 - 4. (P) and (D) are both infeasible.

Maximum flow and duality

• Primal problem

$$\begin{array}{ll} \max & \sum_{e: \text{source}(e) = s} x_e - \sum_{e: \text{target}(e) = s} x_e \\ \text{s.t.} & \sum_{e: \text{target}(e) = v} x_e - \sum_{e: \text{source}(e) = v} x_e = 0, \quad \forall v \in V \setminus \{s, t\} \\ & 0 \leq x_e \leq c_e, \qquad \forall e \in E \end{array}$$

Dual problem

$$\begin{array}{ll} \min & \sum_{e \in E} c_e y_e \\ \text{s.t.} & z_w - z_v + y_e \geq 0, \quad \forall e = (v, w) \in \\ & z_s = 1, z_t = 0 \\ & y_e \geq 0, \qquad \forall e \in E \end{array}$$

Ε

Maximum flow and duality (2)

- Let (y^*, z^*) be an optimal solution of the dual.
- Define $S = \{v \in V \mid z_v^* > 0\}$ and $T = V \setminus S$.
- (S, T) is a minimum cut.
- · Max-flow min-cut theorem is a special case of linear programming duality.

Integer Linear Optimization (ILP)

- $z_{IP} = \max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- $z_{LP} = \max\{c^T x \mid Ax \leq b, x \in \mathbb{R}^n\}$
- $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$
- $S = \{x \in \mathbb{Z}^n \mid Ax \leq b\} = P \cap \mathbb{Z}^n$
- Basic properties
 - If $P = \emptyset$, then $S = \emptyset$.
 - If z_{LP} is finite, then $S = \emptyset$ or $z_{IP} \le z_{LP}$ is finite.
 - If $z_{LP} = \infty$, then $S = \emptyset$ or $z_{IP} = \infty$.

linear (programming) relaxation

real feasible points

integer feasible points

Integer hull

- $P = \{x \in \mathbb{R}^n \mid Ax \le b\}, \ S = \{x \in \mathbb{Z}^n \mid Ax \le b\} = P \cap \mathbb{Z}^n$
- $P_I = conv(S)$ integer hull
- Theorem: P₁ is again a polyhedron
- Vertices of P₁ belong to S
- max{ $c^T x \mid x \in S$ } = max{ $c^T x \mid x \in conv(S)$ }

→ reduce integer linear optimization to linear optimization?

Cutting planes

conv(S) is very hard to compute \rightsquigarrow approximation by cutting planes

• Solve the linear relaxation

$$\max\{c^T x \mid Ax \leq b, x \in \mathbb{R}^n\}$$

and compute a basic feasible solution x^* .

- If $x^* \in \mathbb{Z}^n$, the integer linear program has been solved.
- If x^{*} ∉ Zⁿ, generate a *cutting plane a^Tx* ≤ β, which is satisfied by all integer points in P, but which cuts off the fractional vertex x^{*} of P.
- Add the inequality $a^T x \leq \beta$ to the system $Ax \leq b$ and solve the relaxation again.

References

- J. Matousek, B. Gärtner: Understanding and using linear programming, Springer, 2007.
- B. Kolman and R. E. Beck: Elementary linear programming with applications (Second Edition), Elsevier, 1995, http://www.sciencedirect.com/science/book/9780124179103
- D. Bertsimas, J. N. Tsitsiklis: Introduction to linear programming, Athena Scientific, 1997.
- M. Grötschel, L. Lovász, A. Schrijver: Geometric algorithms and combinatorial optimization, Springer, 1988.

