494 Chap. 11 Integer programming methods

11.4 Integer programming duality

In this section, we develop the duality theory of integer programming. This
in turn leads to a method for obtaining tight bounds, that are particularly
useful for branch and bound. The methodology is closely related to the
subject of Section 4.10, but our discussion here is self-contained.

We consider the integer programming problem

minimize ¢/x
subject to Ax > b

Dx > d
x integer,

(11.5)

and assume that A, D, b, ¢, d have integer entries. Let Zip the optimal
cost and let)
X = {x integer | Dx > d}.

In order to motivate the method, we assume that optimizing over the set
X can be done efficiently; for example X may represent the set of feasible
solutions to an assignment problem. However, adding the constraints Ax >
b to the problem, makes the problem difficult to solve. We next consider
the idea of introducing a dual variable for every constraint in Ax > b. Let
p > 0 be a vector of dual variables (also called Lagrange multipliers) that
has the same dimension as the vector b. For a fixed vector p, we introduce
the problem ;
minimize c¢'x+ p/(b — Ax)

subject to x € X, (11.6)

and denote its optimal cost by Z(p). We will say that we relax or dualize
the constraints Ax > b. For a fixed p, the above problem can be solved
efficiently, as we are optimizing a linear objective over the set X. We next
observe that Z(p) provides a bound on Zp.

Proof. Let x* denote an optimal solution to (11.5). Then, b — Ax* < 0
and, therefore,
cx* +p'(b— Ax*) < 'x* = Zp.

Since x* € X,
Z(p) < c'x* +p'(b — Ax™),

and therefore, Z(p) < Zip. , O

Since problem (11.6) provides a lower bound to the integer program-
ming problem (11.5) for all p > 0, it is natural to consider the tightest such

Sec. 11.4 Integer programming duality 495

Figure 11.6: The function Z(p) is concave and piecewise linear.

bound. For this reason, we introduce the problem

maximize Z(p)
11.7
subject to p > 0. ()

We will refer to problem (11.7) as the Lagrangean dual. Let

Zp = rgggZ(p)-

Suppose for instance, that X = {xl,...,xm}. Then Z(p) can be also

written as '

Z(p) = min (¢'x* + p/(b — AxY)). (11.8)
The function Z(p) is concave and piecewise linear, since it is the minimum
of a finite collection of linear functions of p (see Theorem 1.1 in Section 1.3
and Figure 11.6). As a consequence, the problem of computing Zp [namely,
problem (11.7)] can be recast as a linear programming problem, but with
a very large number of constraints.

Tt is clear from Lemma 11.1 that weak duality holds:

The previous theorem represents the weak duality theory of integer
programming. Unlike linear programming, integer programming does not
have a strong duality theory. (Compare with Theorem 4.18 in Section 4.10.)

Indeed in Example 11.8, we show that it is possible to have Zp < Zip.
The procedure of obtaining bounds for integer programming problems by
calculating Zp is called Lagrangean relazation. We next investigate the
quality of the bound Zp, in comparison to the one provided by the linear
programming relaxation of problem (11.5).

On the strength of the Lagrangean dual

The characterization (11.8) of the Lagrangean dual objective does not pro-
vide particular insight into the quality of the bound. A more revealing
characterization is developed in this subsection. Let CH(X) be the convex
~hull of the set X. We need the following result, whose proof is outlined
in Exercise 11.8. Since we already know that the convex hull of a finite
set is a polyhedron, this result is of interest when the set {x | Dx > d} is
unbounded and the set X is infinite.

) sume' that the system of Imear 1nequa11tles [X >
' and that the matrlx D and the Vector d have

The next theorem, which is the central result of this section, charac-
terizes the Lagrangean dual as a linear programming problem.

orem 11 4 The opt1ma1 Ve
e optzma] cost: of the follo“

Proof. By definition,

Z(p) = min (¢'x+p'(b — Ax)).

Since the objective function is linear in x, the optimal cost remains the
same if we allow convex combinations of the elements of X. Therefore,

Z(p) = i / b — A
(p) = min (cx+p/(x)),

and hence, we have

- c'x +p'(b — Ax)).
7> = ek By (P = Ax)

Let x*, k € K, and w7, j € J, be the extreme points and a complete set
of extreme rays of CH({X), respectively. Then, for any fixed p, we have

—00, if (c - p’A)WJ < 0‘
for some j € J T
Z(p) = e i .
min (c'x* + p'(b — Ax")), otherwise.
keK

Therefore, the Lagrangean dual is equivalent to and has the same optimal
value as the problem
fand : 1k ! b— Axk
maximize min (c'x* +p'(;)

subject to (¢’ — p’A)w? >0, jed,
p=0,
or equivalently,
maximize y
subject to y + p'(Ax*¥ —b) < xF, ke K,
p' Aw’ < c'w, jeJ,
p=0.

Taking the linear programming dual of the above problem, and using strong
duality, we obtain that Zp is equal to the optimal cost of the problem

minimize ¢’ Z o x® + zﬁjwj
. keK jeJ
subject to Z ap =1
keK

Z akxk + Z,ijj >b
keK Jed

ar,B; >0, kekK,jeld.

Since,

CH(X) = { Z'akxk'—i-z Bjw?

Zakzla ak,ﬁjzoa k€K7j€J}:
kEK jeJ

keK

O

the result follows.

Lxample L1.5 (lllustration of Lagrangean relaxation) Consider the prob-
lem

minimize 3z1 — z2

subject to 1 — zp > —1
—-x1 + 222 < 5
3z1 + 229 > 3
6z1 + z2 < 15
T1,22 > 0

T1,T2 integer.

We relax the first constraint 71 — 22 > —1, and we let X be the set of integer
vectors that satisfy the remaining constraints. The set X, shown in Figure 11.7,
is then

X = {(1)0)7 (27 0)7 (1’ 1)7 (27 1)? (07 2)’ (17 2)’ (27 2)’ (1’3)7 (2’ 3)}
For p > 0, we have

Z(p) = i 3z, — -1 -
(p) <z1ffclil)lex(w1 — 22+ p(=1 — 71 + 22)),
which is plotted in Figure 11.8. :
Since there are nine points in X, Z(p) is the minimum of nine linear func-
tions. The function Z(p) turns out to be equal to

The Lagrangean dual is maximized for p = 5/3, and the optimal value is Zp =
Z(5/3) = —1/3. For p = 5/3, the corresponding elements of X are (1,0) and
(0,2).

In order to illustrate Theorem 11.4, we find first the convex hull CH(X)
of X, and intersect it with the constraint z; — 2z, > —1, forming the shaded
polyhedron in Figure 11.7. Optimizing the original objective function 3z; — @
over this polyhedron, we obtain that the optimal solution is (1/3,4/3) with value
—1/3, which is the same as Zp.

Although we presented the method for the case where the relaxed
constraints were inequalities, the method is exactly the same even if we
have equality constraints. The only difference is that the corresponding
Lagrange multipliers are unrestricted in sign.

Having characterized the optimal value of the Lagrangean dual as the
solution to a linear programming problem, it is natural to compare it with
the optimal cost Zip and the optimal cost Z.p of the linear programming
relaxation

minimize ¢'x
subject to Ax
Dx

b

>
> d.

Figure 11.7: The points shown are elements of X. The convex

" hull of X is the set outlined by the thicker lines. The shaded
polyhedron represents the intersection of CH(X) with the set of
vectors that satisfy 1 —z2 > —1. The optimal solution to problem
(11.9) is xp = (1/3,4/3), and its cost Zp is equal to —1/3. Note
that the optimal solution to the linear programming relaxation is
the vector xip = (1/ 5, 6/5), resulting in a lower bound Zip =
—9/5. The optimal solution to the integer programming problem
is Xp = (1,2), and Zip = 1. Note that Z,LP < Zp < Zip.

In general, the following ordering holds among Z1,p, Zip, and Zp:
Zip < Zp < Z1p.
The first inequality follov‘;s from Theorem 11.4, because
CH(X) c {x|Dx >d},

and the second inequality follows from Theorem 11.2. In the next example,
we show that, depending on the objective function, these inequalities can
be strict.

Example 11.9 We refer again to Example 11.8. It can be verified that we have
the following possibilities:
(a) For the original objective function 3z1 — 22, we have Zrp < Zp < Zrp.
(b) If we change the objective function to —z1 + z2, we have Zrp < Zp = Z1p.

(c¢) For the objective function —z1 — z2, we have Zip = Zp = Zrp.

Figure 11.8: The function Z(p). Each line is the plot of the
function 3z1 — z2 + p(—1 — z1 + z2), where (21, z2) is set to some
particular element of X. The lower envelope of these lines is the
function Z(p). The maximum of Z(p) is —1/3 and is attained for

p=5/3.

One can also construct an example, in which the relation Zyp = Zp < Zip holds.
In this example, however, such an ordering is not possible.

Using Theorem 11.4, we can make the following observations:

It is interesting to observe that if the polyhedron {x | Dx > d}, has
integer extreme points, then CH(X) = {x | Dx > d}, and therefore Zp is
equal to the optimal cost of the linear programming relaxation.

Example 11.10 (Improved bounds for the traveling salesman prob-
lem) The following set of constraints for the traveling salesman problem on an
undirected graph G = (N, £), was introduced in Section 10.3:

Z Te = 2, ieN,

e€s({i})

Z ze < |S|-1, SCWN, S#O,N,
eCE(S)

z. € {0, 1}.

[Recall that ze indicates whether edge e participates in the tour. Also, §({i})
is the set of edges incident to node i, and E(S) is the set of edges with both
endpoints in S.] We choose node 1 as a special node, called the root node, and
add the redundant equality

> me=V-2

e€B(M\{1})

The formulation can be then written as follows.

minimize Z CeZe
e€E
subject to Z Te = 2, te N\ {1},
ees({i})
S w e
e€s({1})
Y @ <IS|-1, SCN, S#O.N,
ecE(S) .
Te = lNl - 2»
e€E(N\{1})
z. € {0,1}.

Next, we apply the Lagrangean relaxation methodology to the above formulation,
by dualizing the constraints

3 me=2, ieN\{1}. (11.10)
e€s({i}) .

The binary vectors satisfying all the constraints except for (11.10) constitute the
set X. We define an 1-tree to be a tree involving all nodes in A\ {1}, and two
additional edges incident to node 1 (see Figure 11.9). It is not hard to show that X
is the set of vectors that correspond to 1-trees. As a result, we can optimize over
X efficiently, by using the greedy minimum spanning tree algorithm on N \ {1},
and then adding the two smallest cost edges from node 1. Moreover, it is known
that CH(X) is the polyhedron described by all inequalities except (11.10), and
where we replace the integrality constraints with x > 0.

Figure 11.9: Two 1-trees.

. We consider the linear programming relaxation of the original formulation
which is

>

minimize E CeZe

ec€ .
subject to Z Te = 2, 1EN,
e€s({i})
Yz < IS|-1, SCN, S£BN,
e€E(S) B '

Notice that the constraint z. < 1 is implied by the subtour elimination constraints
for § = e = {4, 5}, and is therefore omitted.

By Corollary 11.1(b), Zp = Zrp. The optimal value Zp of the Lagrangean
dual is called the Held-Karp lower bound. As we mentioned, the calculation
of Z(p) for a fixed vector p can be done efficiently. This leads to an effective
algorithm for computing the Held-Karp lower bound.

IIEL general, the combination of branch and bound and Lagrangean
relaxation yields some of the most effective methods for many classes of
integer programming problems.

Solution of the Lagrangean dual

In this subsection, we outline a method for finding the optimal Lagrange
multipliers p*, that solve the Lagrangean dual problem (11.7). To keep
the presentation simple, we assume that X is finite and X = {x1,... , XM}
Given a particular value of p, we assume that we can calculate Z (p), which
we have defined as follows:

Z(p) = ,_mi (¢'x" 4+ p'(b — AxY)).

n
=1,...,m

Let f; = b — Ax* and h; = ¢’x*. Then,

Z(p) = min_(h; +f;p),
i=1,...,m
which is piecewise linear and concave, as discussed earlier.

In order to motivate the following discussion, let us assume for the
moment that the function Z(p) is also differentiable. Then, the classical
steepest ascent method for maximizing Z(p) is given by the sequence of
iterations

pitl =pt+6,VZ(p"), t=1,2,...
In our case, the function Z(p) is not differentiable and thus VZ(p*) does
not always exist. For this reason, we need to generalize the notion of the
gradient to nondifferentiable concave functions. The following alternative
characterization of concave functions is helpful in this respect. The proof
is based on the supporting hyperplane theorem, which is an extension of
the separating hyperplane theorem, and is omitted; see Exercise 11.9.

The vectors s in Lemma 11.2 provide the required generalization.

If the function f is differentiable at x*, then it can be verified that
of(x*) = {Vf(x*)}. If £ is not differentiable, then Lemma 11.2 establishes
that the subdifferential is nonempty at every point. Figure 11.10 shows an
example of a subgradient. Definition 11.1 is the same as Definition 5:1 in
Section 5.3, except that the direction of the inequality is reversed; the reason
is that here we are dealing with concave as opposed to convex functions.

Note that the inequality f(x) < f(x*) for all x € R", is equivalent
to saying that O is a subgradient of f at x*. This observation is formally
recorded in the following lemma, which establishes a necessary and sufficient
condition for the maximum of a concave function.

Figure 11.10: A concave function f(x) and a subgradient s of
f at x*. Note that f(x) < f(x*) +s'(x — x*).

We next characterize exactly the subdifferential of a piecewise linear
concave function; see Figure 11.11 for an illustration. The proof is based
on Farkas’ lemma and is omitted (Exercise 11.10).

The following algorithm generalizes the steepest ascent algorithm and
can be used to maximize a nondifferentiable concave function Z(-).

Figure 11.11: The subdifferential of Z(p) at p* is the set of all
vectors that can be written as convex combinations of fi and fz.

We have characterized the subdifferential of a piecewise linear concave
function in Lemma 11.4. Typically, however, only the extreme subgradients
f; are used.

We next specify the stepsize 6;. It can be proved that Z (p?) converges
to the unconstrained maximum of Z(-), assuming it is finite, for any stepsize
sequence 6, such that

t—r00

o
ZOt = 00, and lim 9t = 0.
t=1 :

An example of such a sequence is §; = 1/¢. For practical purposes, however,
this leads to slow convergence, and other choices for the stepsizes 6; are
often used. An example is

6, = Boa®, t=1,2,...,

where a is a scalar satisfying 0 < o < 1. A more sophisticated and popular
rule is to let

_ ZD - Z(pt)at
[|s%]2 ’

0, =

1 5.00 | =3 | —9.00

2 260 | —2 | —2.20

1.32 1| -0.68

183 | -2 | —0.66

1.01 1 -0.99

1.34 1| —0.66

1.60 1| —0.40

O | N | | Ot x| W

1.81 | =2 | —-0.62

9 1.48 1| —0.52

10 1.61 1] —-0.39

Table 11.1: An example of the subgradient optimization algorithm.

where « satisfies 0 < o < 1, and Zp is an estimate of the optimal value Zp.
In practice, the stopping criterion 0 € dZ(p?) is rarely met. Typically, the
algorithm is stopped after a fixed number of iterations.

’ Notice that we are interested in maximizing Z(p) subject to p > 0.
However, with the algorithm that we have presented, the property p* > 0
is not guaranteed to hold. In order to enforce this condition, we replace
Step 3 of the subgradient optimization algorithm by

pi*t = max {pj +6,57,0}, V.

Example 11.11 We apply subgradient optimization to find ZD in Example
11.8. In this case,

Z(p) =min {3-2p, 6—3p, 2—p, 5—2p, —2+p, 1, 4—p, p, 3},
corresponding to the points in the set
X ={(1,0),(2,0),(1,1),(2,1),(0,2),(1,2),(2,2),(1,3),(2,3) }.

We let 6; = 0.8°. We start with p* = 5. Then, the minimum in the formula for
Z(p) is obtained for the piece 6 — 3p corresponding to (2,0). The new Lagrange
multiplier is p? = 5 4+ 0.8(=3) = 2.6. The results of the first ten iterations are
reported in Table 11.1. The optimal solution is p* = 5/3 = 1.66 and Zp =
—1/3 = —0.33. In ten iterations, the best value obtained was in iteration 8, with
value —0.39. The example is typical of the behavior of the algorithm. It does not

have monotonic convergence, and in order to find a near-optimal solution, several
iterations are needed. Another factor at play is that by the tenth iteration, the
stepsize has become quite small and the algorithm is losing the ability to make

rapid progress.

11.5 Approximation algorithms

In this section, we introduce algorithms that provide a feasible, but sub-
optimal solution in polynomial time, together with a provable guarantee
regarding its degree of suboptimality. We start with a definition.

Given an optimization problem, a natural question is whether there
exists an e-approximation algorithm for every ¢ > 0. For some problems,
this is indeed the case, but there is no general methodology for coming up
with such algorithms. An example is provided next.

An e-approximation algorithm for the zero-one
knapsack problem

Let us recall the zero-one knapsack problem:

n
maximize Z CiTj
n
subject to Z wijz; LK
=1
:l‘j S {0, 1}.

We have observed in Section 11.3, that the zero-one knapsack problem can
be solved in time O(n%cmax), and becomes polynomially solvable if crpax <
nd. This motivates an algorithm in which the coefficients ¢; are replaced
by smaller values and which produces approximately optimal solutions to
the original problem. The key idea is the following. Consider a problem

