Farkas Lemma

Theorem. Suppose $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$.

- 1. The system $Ax \le b$ has no solution $x \in \mathbb{Q}^n$ if and only if there exists $u \in \mathbb{Q}^m$, $u \ge 0$ such that $u^T A = 0$ and $u^T b = -1$.
- 2. If $Ax \le b$ is solvable, then an inequality $c^Tx \le \delta$ with $c \in \mathbb{Q}^n$ and $\delta \in \mathbb{Q}$ is satisfied by all rational solutions of $Ax \le b$ if and only if there exists $u \in \mathbb{Q}^m$, $u \ge 0$ such that $u^TA = c^T$ and $u^Tb \le \delta$.

Rules for reasoning with linear inequalities:

nonneg_lin_com:
$$\frac{Ax \le b}{(u^T A)x \le u^T b}$$
 if $\begin{cases} u \in \mathbb{Q}^m, \\ u \ge 0 \end{cases}$

$$\text{weak_rhs:} \ \frac{a^{\mathsf{T}}x \leq \beta}{a^{\mathsf{T}}x \leq \beta'} \ \text{if} \ \beta \leq \beta'$$

Duality

Primal problem:
$$z_P = \max\{\mathbf{c}^\mathsf{T} x \mid Ax \le b, x \in \mathbb{R}^n\}$$
 (P)

Dual problem:
$$w_D = \min\{b^T u \mid A^T u = \mathbf{c}, u \ge 0\}$$
 (D)
= $\min\{u^T b \mid u^T A = \mathbf{c}^T, u \ge 0\}$

Note: The dual computes a smallest upper bound for the objective function of the primal, which is of the form $c^Tx = u^TAx \le u^Tb = \delta$ (cf. Farkas Lemma).

Note: The dual of the dual is the primal.

Duality: General form (2)

	(P)			(D)	
max	$c^T x$		min	b^Tu	
w.r.t.	$A_{i*}x \leq b_i$,	$i \in M_1$	w.r.t	$u_i \geq 0$,	$i \in M_1$
	$A_{i*}x \geq b_i$,	$i \in M_2$		$u_i \leq 0$,	$i \in M_2$
	$A_{i*}x=b_i,$	$i \in M_3$		u_i free,	$i \in M_3$
	$x_j \geq 0$,	$j \in N_1$		$(A_{*j})^T u \geq c_j,$	$j \in N_1$
	$x_j \leq 0$,	$j \in N_2$		$(A_{*j})^T u \leq c_j,$	$j \in N_2$
	x_j free,	$j \in N_3$		$(A_{*j})^T u = c_j,$	$j \in N_3$

primal	max	min	dual
	$\leq b_i$	≥ 0	
constraints	$\geq b_i$	≤ 0	variables
	= <i>b</i> _i	free	
	≥ 0	$\geq c_j$	
variables	≤ 0	$\leq c_j$	constraints
	free	$= c_j$	

Duality theorems

• Weak duality: If x^* is primal feasible and u^* is dual feasible, then

$$c^T x^* \leq z_P \leq w_D \leq b^T u^*$$
.

- Strong duality
 - If (P) and (D) both have feasible solutions, then both programs have optimal solutions and the optimum values of the objective functions are equal.
 - If one of the programs (P) or (D) has no feasible solution, then the other is either unbounded or has no feasible solution.
 - If one of the programs (P) or (D) is unbounded, then the other has no feasible solution.
- Only four possibilities:
 - 1. z_P and w_D are both finite and equal.
 - 2. $z_P = +\infty$ and (D) is infeasible.
 - 3. $w_D = -\infty$ and (P) is infeasible.
 - 4. (P) and (D) are both infeasible.

Maximum flow and duality

Primal problem

$$\begin{aligned} &\max & & \sum_{e: \text{source}(e) = s} x_e - \sum_{e: \text{target}(e) = s} x_e \\ &\text{s.t.} & & \sum_{e: \text{target}(e) = v} x_e - \sum_{e: \text{source}(e) = v} x_e = 0, \quad \forall v \in V \setminus \{s, t\} \\ & & 0 \leq x_e \leq c_e, & \forall e \in E \end{aligned}$$

Dual problem

min
$$\sum_{e \in E} c_e y_e$$
s.t.
$$z_w - z_v + y_e \ge 0, \quad \forall e = (v, w) \in E$$

$$z_s = 1, z_t = 0$$

$$y_e \ge 0, \qquad \forall e \in E$$

Maximum flow and duality (2)

- Let (y^*, z^*) be an optimal solution of the dual.
- Define $S = \{ v \in V \mid z_v^* > 0 \}$ and $T = V \setminus S$.
- (S, T) is a minimum cut.
- Max-flow min-cut theorem is a special case of linear programming duality.

min

Complexity of linear programming

Theorem (Khachyian 79) The following problems are solvable in polynomial time:

- Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, decide whether $Ax \leq b$ has a solution $x \in \mathbb{Q}^n$, and if so, find one.
- (Linear programming problem) Given a matrix $A \in \mathbb{Q}^{m \times n}$ and vectors $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, decide whether $\max\{c^Tx \mid Ax \leq b, x \in \mathbb{Q}^n\}$ is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is unbounded, find a feasible solution x_0 , and find a vector $d \in \mathbb{Q}^n$ with $Ad \leq 0$ and $c^Td > 0$.

Polynomial algorithms for linear programming

- Ellipsoid method (Khachyian 79)
- Interior point methods (Karmarkar 84)

Complexity of constraint solving: Overview

Satisfiability	over Q	over $\mathbb Z$	over ℕ
Linear equations	polynomial	polynomial	NP-complete
Linear inequalities	polynomial	NP-complete	NP-complete

Satisfiability	over $\mathbb R$	over $\mathbb Z$	
Linear constraints	polynomial	NP-complete	
Non-linear constraints	decidable	undecidable	

References

- J. Matousek, B. Gärtner: Understanding and using linear programming, Springer, 2007.
- B. Kolman and R. E. Beck: Elementary linear programming with applications (Second Edition), Elsevier, 1995, http://www.sciencedirect.com/science/book/9780124179103
- A. Schrijver: A course in combinatorial optimization, Chap. 2, CWI, Nov. 2012, http://homepages.cwi.nl/~lex/files/dict.pdf