4 NGS read mapping

This exposition has been developed by Knut Reinert. It is based on the following sources, which are all
recommended reading:

1. Li, H,and Homer, N. (2010) A survey of sequence alignment algorithms for next-generation sequencing. Briefings
in Bioinformatics 11 (5) (September 21): 473-483.

2. Holtgrewe, M., Emde A.-K., Weese D., Reinert K. (2011) A Novel And Well-Defined Benchmarking Method
For Second Generation Read Mapping. BMC Bioinformatics 12 (1): 210.

The term read mapping has itself established since a couple of years for another, well studied problem, namely
approximate string matching with certain application driven constraints.

The constraints are:

usually DNA (or RNA) is considered (which means a small alphabet size).

we have to map short strings (about 50 to 3000 bases) to a large string (billions of bases).

there are relatively few errors allowed (usually around 3-4%, some application might go up to 10%).

the problem sizes are very large (billions of small strings map to a string of size up to several billion
characters).

4.1 Second-generation sequencing technologies

454 FLX/Roche Solexa/lllumina SOLiD/ABI
Sequencing pyrophosphate bridge amplification ligation
approach release
Read lengths 400-500bp 36bp 35bp or 25bp (MP)
Mate pairs yes yes yes
Output/Run 400-600Mbp in 10h > 1.5Gbp in 2.5d 3-4Gbp in 6d
Accuracy homopolymer length nucleotide position nucleotide position

in the read

depends on (> 6 problematic) in the read

GS FLX Titanium
Series

Genome Analyzer 2

K

SOLiD System 2.0
Analyzer

The last slide was “old”.

INluminas HiSeq 2500 now produces at least 600 Gbp in about 12 days. That is about one billion reads, of length
100-150 bp in mate pairs. In addition, the end of higher throughput does not seem to be reached.

In addition, new technologies allow the sequencing of single molecules.

What are the applications for which this technology is currently used?
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4.2 Second-generation sequencing applications

Genome Assembly RNA-Sequencing Genome Comparison
Resequencing Expression Profiling SNPs
De novo assembly Alt. splicing  microRNA Rearrangements
Metagenomics Epigenetics
ChIP-Seq
DNA Methylation
4.3 RNA-Sequencing

How RNA-Seq works:

e RNA isolatation
e Reverse transcription to cDNA

e Fragmentation

(Size selection)

e Sequencing

RNA-Seq applications:

o Expression profiling: Quantify gene expression levels
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lllumina Solexa, Roche 454, or ABl SOLID
Graphic shown here is [llumina

o Alternative splicing: Which mRNAs are generated from the same gene?

e microRNA: Where is the genomic source, which genes are regulated?

4001
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4.4 RNA-Seq - Alternative Splicing
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Two approaches to determine splice variants:

1. Cut the genome at known splice sites and map mRNA reads onto combinations of merged genome fragments
2. Map as many mRNA reads as possible onto the genome and use coverage and known introns to detect new splice
sites. Proceed as above.

Map reads to whole
= genome with Bowtie

N

Collect initially

appable reads
Second Approach”: AnmAppEie T
Assemble
consensus of
(] Map reads covered regions
e Assemble uniquely mapped reads ,
P Generate possible
. . iy splices between
o Generate possible splices gt ag ag pneighboring
exons
° -
Try to map the non-uniquely mapped reads onto splices Build sced table
index from
unmappable reads
Map reads to possible
gt ag ag splices via seed-and-
*Trapnell C, Pachter L, Salzberg SL. (2009) TopHat: discovering splice junc- extend

tions with RNA-Seq, Bioinformatics
Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The ITUM reads are indexed and aligned
to these splice junction sequences.
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Genome Assembly

RNA-Sequencing

Genome Comparison
Resequencing

Expression Profiling

SNPs
De novo assembly Alt. splicing  microRNA Rearrangements
Metagenomics Epigenetics
ChIP-Seq

DNA Methylation

4.5 Genome Comparison

e Sequence paired-end reads of an unknown genome (sample)

e Map them onto a known reference genome (target)

e Search for small mutations (SNPs) or large structural variations (rearrangements) between them

BREAKFOINT DETECTION WITH ILLUMINA PAIRED-END SEQUENCING
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Inversions, deletions, translocations can also be detected.!?

4.6 Other applications
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Metagenomics*

ChIP-Sequencing®
Fundamental to almost all of these applications is the following problem:

Problem 1 (Read Mapping Problem). Given a set of read sequences R, a reference sequence G, and a distance
k € N. Find all pairs (r, g) with r € R, g is substring of G and dist(r, g) < k.

Common distance measures are Hamming distance or edit distance.
The pairs (r, g) are called matches of r.

However, depending on the application, we have to adapt the problem definition.

4.7 Objective functions

By now it should be clear to you, that the term read mapping subsumes a number of different objective
functions. In the normal case we want to find the approximate occurrences of a complete read, that is, conduct
a semi-global alignment.

If we have for example RNA reads, then the read may corresponds to several genomic loci that have been
spliced together. In this case we speak of split alignment to distinguish it from local alignment. In split
alignment we want to find the complete read, whereas this is not necessary in local alignment.

The problem of split alignment can be further subdivided depending on the decision whether we allow parts
of the split read to be reverse complemented (e.g. assembly error), be missing, or out of order (e.g. genomics
insertions or deletions).

Usually split read mapping is reduced to several subproblems of normal read mapping.

Finally, a distinction is made whether the approximate string matching supports (weighted) edit distance or
only the Hamming distance.

While the edit distance is preferable, it makes the problem computationally harder. Often you will find in read
mapping heuristics some ”in-between” formulations (e.g. supports mismatches and up to 2 insertions).

Be aware of such limitations.

1Korbel JO, Urban AE, Affourtit JP, et al. (2007) Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome, Science

2Bashir A, Volik S, Collins C, Bafna V, Raphael BJ. (2008) Evaluation of paired-end sequencing strategies for detection of genome rearrangements
in cancer, PLoS computational biology

“Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone
methylations in the human genome, Cell

4Poinar HN, Schuster SC, et al. (2006) Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA, Science



Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35 4005

If we have a fixed objective function for our special approximate string matching problem, we can still make
distinctions about the set of matches we want to find. A reasonable distinction could be the tasks of finding:

1. all matches with up to k errors.
2. all best matches.

3. any best match.

Doing this of course implies to have a good definition, what we actually mean with a match?

Have a look at the following situation:

4.8 Benchmarking

reference  CAGACTCCCAACTGTCA - - - CAGACTCCCCCCAACTG™
alignments TCCCAAC TCCC---AAC

* T-CCCAAC

*x TCCCAA-C

Different kind of approximate matches.

Say, we want to find the best two matches of the read in the reference sequence, with an edit distance of up to
3. Both locations in the reference sequence are shown. The row alignments shows two alignments of the read
to the reference sequence that appear to be optimal. However, the alignments in the rows below have a lower
edit distance than the right one.

Common sense would tell us that the alignments in the left column are not significantly different, though. Each
alignment with distance k induces alignments with distance at most k + 2 by aligning the leftmost/rightmost
base one more position to the left/right and introducing a gap.

Repeats are another issue. Consider the tandem repeats in the below figure.

reference ---CGACdCACCACGACCCACCACGACCCA(

CGACCCACCACGACCCACCA
CGACCCACCACGACCCAC

Large period repeat.

Intuitively, we can identify the two distinct alignments in this situation. Now look at a tandem repeat with a
shorter period:

— S A Y Y Y A /A /A

reference - - - CAACAACAACAACAACAACAACAACAA

CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA

Small period repeat.
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Do we really want to find all those alignments?

Counting alignments in this way would require a read mapper to find lots of positions in repeat regions. This
is not desirable since reads from long tandem repeat regions would get a higher weight with this counting
scheme than reads from short tandem repeat regions or reads from non-repeat regions.

Only weighting each found match with 1/n (where n is the number of positions the read aligns at) is also
deficient (why?).

Hence it is more desirable to define when two matches are considered the same and when they should be
counted separately.

Without giving the details, one can define an equivalence relation on the set of matches, which can be depicted
as follows as an error landscape.

distance

A 4

match end position

Error landscape.

Flooding this landscape to the respective error level gives a number of intervals, which in turn can be used to
define the specificity and sensitivity of read mappers. In the benchmark it is sufficient to return one endposition
within the interval.

Some of the intervals will be labelled optimal, if they contain a matching position with the minimal distance
(e.g. edit or hamming). If we benchmark read mapping application with the goal find any best, then it should
return an alignment ending in one of those intervals. If we have the goal find all best, the read mapper should
return all optimal intervals, etc.

This can now be used to make comprehensive comparisons between different methods to compare their
performance.

As an evaluation metric we use the number of normalized found intervals.

This is defined as follows: Each read gives at most one point. If a read matches at # locations (i.e. intervals),
each found location gives 1/n point. To get percentages, the number of achieved points is divided by the
number of reads and multiplied by 100.

Have a look at results of recent read mappers (2011) for the three different categories (Illumina reads of
Drosophila Melanogaster, 100 bp length), but mind that those plots do not give the run times.
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4.9 Computational paradigms

Lets go back to algorithmic paradigms used in read mapping algorithms.

Given the large data, obviously all algorithms use some string indices to preprocess the reads, the genome, or
both. The indices can be used directly for searching as in the case of the enhanced suffix array or Burrows
Wheeler transform (BWT), or they are used to filter out regions that do not contain matches (as in the case of
(gapped) g-gram indices).

You have already encountered a simple filter that is based on a g-gram index and uses a simple version of the
g-gram lemma. This paradigm is called g-gram counting. We will sketch a more advanced algorithm. First, we
will talk about g-gram pidgeonhole filter and a hieracharchical verification scheme introduced by Navarro.
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5 Fast filtering algorithms

This exposition is based on
1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 6.5, pages 162ff.

We present the hierarchical filtering approach called PEX of Navarro and Baeza-Yates.

5.1 Filtering algorithms

The idea behind filtering algorithms is that it might be easier to check that a text position does not match a
pattern string than to verify that it does.

Filtering algorithms filter out portions of the text that cannot possibly contain a match, leaving positions that
could match.

The potential match positions then need to be verified with another algorithm like for example the bit-parallel
algorithm of Myers (BPM).

Filtering algorithms are very sensitive to the error level o := k/m since this normally affects the amount of text
that can be discarded from further consideration. (m = pattern length, k = errors.)

If most of the text has to be verified, the additional filtering steps are an overhead compared to the strategy of
just verifying the pattern in the first place.

On the other hand, if large portions of the text can be discarded quickly, then the filtering results in a faster
search.

Filtering algorithms can improve the average-case performance (sometimes dramatically), but not the worst-
case performance.

5.2 The pigeonhole principle

Assume that we want to find all occurrences of a pattern P = py,...,pn inatext T = f4,...,t, that have an edit
distance of at most k.

If we divide the pattern into k + 1 pieces P = p!,...,p*!, then at least one of the pattern pieces match without
error.

There is a more general version of this principle first formalized by Myers in 1994:

Lemma 2. Let Occ match P with k errors, P = pl, e, pj be a concatenation of subpatterns, and ay, . .., a; be nonnegative
integers such that A = Y,I_ a;. Then, for some i €1,...,j, Occ includes a substring that matches p* with |aik/A] errors.
Proof: Exercise.

So the basic procedure is:

1. Divide: Divide the pattern into k + 1 pieces of approximately the same length.

2. Search: Search all the pieces simultaneously with a multi-pattern string matching algorithm. According
to the above lemma, each possible occurrence will match at least one of the pattern pieces.

3. Verify: For each found pattern piece, check the neighborhood with a verification algorithm that is able to
detect an occurrence of the whole pattern with edit distance at most k. Since we allow indels, if p;, ...p;,
matches the text t;...t;;;,;, then the verification has to consider the text area t;_;,_1)—x . . . t js(u-i,)+x, which
is of length m + 2k.
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5.3 An example

Say we want to find the pattern annual in the texts
t; = any_annealing and
ty = an_unusual_example_with_numerous_verifications

with at most 2 errors.

1. Divide: We divide the pattern annual into p* = an, p* = nu, and p®> = al. One of these subpattern has to
match with 0 errors.

2. Search: We search for all subpatterns:

1: searching for an: in t_1: find positions 1, 5
in t_2 find position 1

2: searching for nu: in t_1: find no positions
in t_2: find positions 5, 25

3: searching for al: in t_1 find position 9
in t_2: find position 9

3. Verification: We have to verify 3 positions in ¢, and 4 positions in ¢, to find 3 occurrences in t; and none
in fz.

5.4 Hierarchical verification

The toy example makes clear that many verifications can be triggered that are unsuccesssful and that many
subpatterns can trigger the same verification. Repeated verfications can be avoided by carefully sorting the
occurrences of the pattern.

It was shown by Baeza-Yates and Navarro that the running time is dominated by the multipattern search for

logm m

error levels a = k/m below 1/(3 logp:| m). In this region, the search cost is about O(kn—>—). For higher error

levels, the cost for verifications starts to dominate, and the filter efficiency deteriorates abruptly.
Baeza-Yates and Navarro introduced the idea of hierarchical verification to reduce the verification costs, which
we will explain next. Then we will work out more details of the three steps.

Navarro and Baeza-Yates use Lemmafor a hierarchical verification. The idea is that, since the verification cost
is high, we pay too much for verifying the whole pattern each time a small piece matches. We could possibly
reject the occurrence with a cheaper test for a shorter pattern.

So, instead of directly dividing the pattern into k + 1 pieces, we do it hierarchically. We split the pattern first
in two pieces and search for each piece with |k/2] errors, following Lemma [2} The halves are then recursively
split and searched until the error rate reaches zero, i. e. we can search for exact matches.

With hierarchical verification the area of applicability of the filtering algorithm grows to o < 1/logy m, an
error level three times as high as for the naive paritioning and verification. In practice, the filtering algorithm
pays off for & < 1/3 for medium long patterns.

Example. Say we want to find the pattern P = aaabbbcccddd in the text T = xxxbbbxxxxxx with at most k = 3
differences. The pattern is split into four pieces p! = aaa, p* = bbb, p* = ccc, p* = ddd. We search with k = 0
errors in level 2 and find bbb.

level © aaabbbcccddd with k=3 errors
/ \
level 1 aaabbb cccddd with k=1 errors
/ \ / \
level 2 aaa bbb ccc ddd with k=0 errors

Now instead of verifying the complete pattern in the complete text (at level 0) with k = 3 errors, we only have
to check a slightly bigger pattern (aaabbb) at level 1 with one error. This is much cheaper. In this example we
can decide that the occurrence bbb cannot be extended to a match.



5002 Fast filtering algorithms, by Knut Reinert, Clemens Gropl, May 2, 2012, 20:35

level 0 aaabbbcccddd with k=3 errors
/ \
level 1 AAABBB cccddd with k=1 errors
/ \ / \
level 2 aaa BBB ccc ddd with k=0 errors

5.5 The PEX algorithm

Divide: Split pattern into k + 1 pieces, such that each piece has equal probability of occurring in the text. If no
other information is available, the uniform distribution is assumed and hence the pattern is divided in pieces
of equal length.

Build Tree: Build a tree of the pattern for the hierarchical verification. If k + 1 is not a power of 2, we try to
keep the binary tree as balanced as possible.

Each node has two members from and to indicating the first and the last position of the pattern piece represented
by it. The member err holds the number of allowed errors. A pointer myParent leads to its parent in the tree.
(There are no child pointers, since we traverse the tree only from the leafs to the root.) An internal variable left
holds the number of pattern pieces in the left subtree. idx is the next leaf index to assign. plen is the length of a
pattern piece.

Algorithm CreateTree generates a hierarchical verification tree for a single pattern. (Lines[T2Jand[I4]are justified
by Lemma[2])

1) CreateTree(p = pipis1...pj, k, myParent, idx, plen)

) // Note: the initial call is: CreateTree (p, k, nil, 0, [m/(k+1)])
3) Create new node node

4 from(node) =i

(5) to(node) = j

© left =[(k+1)/2]

(7) parent(node) = myParent

8 err(node) =k

9 ifk=0

a0y then leafis, = node

an else

(12) Ik=(left-k)/(k+1)]

(13) CreateTree( p; ... Pitieftplen-1, lk, node, idx, plen )

(14) rk=[((k+1-left)-k)/(k+1)]

(15) CreateTree( pitieftplen - - - Pj, 1k, node, idx + left, plen )
(6) fi

Example: Find the pattern P = annual in the text T = annual _CPM_anniversary with at most k = 2 errors. First
we build the tree with k + 1 = 3 leaves. Below we write at each node n; the variables (from, to, error) .

"annual" n4=(1,6,2)
/ \
"annu" n3=(1,4,1) \
/ \ \
"an" n®=(1,2,0) "nu" nl1=(3,4,0) "al" n2=(5,6,0)
I | |
leaf 0 leaf 1 leaf 2

Search: After constructing the tree, we have k + 1 leafs leaf;. The k + 1 subpatterns

{Pfrom(n)r'--rpto(n)/ n= leafi/ i€ {0/ /k} }

are sent as input to a multi-pattern search algorithm (e. g. Aho-Corasick, Wu-Manbers, or SBOM). This algorithm
gives as output a list of pairs (pos, i) where pos is the text position that matched and i is the number of the piece
that matched.

The PEX algorithm performs verifications on its way upward in the tree, checking the presence of longer and
longer pieces of the pattern, as specified by the nodes.
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1) Search phase of algorithm PEX

2) for (pos,i) € output of multi-pattern search do
(3) n =leaf; in = from(n); n = parent(n);

(4) cand = true;

5> while cand = true and n # nil do

(6) p1 = pos — (in — from(n)) — err(n);
7) p2 = pos + (to(n) — in) + err(n);
(8) verify text tp, ... t,, for pattern piece p rom(n) - - - Pro(n)
©) allowing err(n) errors;
(10) if pattern piece was not found
(1n then cand = false;
(12) else n = parent(n);
(13) fi
a4y  od
as  if cand = true
(16) then report the positions where the whole p was found;
an  fi
s) od

We search for annual in annual CPM_anniversary. We constructed the tree for annual. A multi-pattern search
algorithm finds: (1,1), (12,1), (3,2), (5,3). (Note that leaf i corresponds to pattern p'*!). For each of these
positions we do the hierarchical verification:

Initialization for (1,1);
n=n0®; in=1; n=n3; cand=true;
While loop;
a) pl=1-(1-1)-1=0; p2=1+(4-1)+1=5;
verify pattern annu in text annua with 1 error => found !
b) pl=1-(1-1)-2=-1; p2=1+(6-1)+2=8;
verify pattern annual in text annual_C => found !
c) report end positions (6,7,8)

Initialization for (3,2);
n=nl; in=3; n=n3; cand=true;
While loop;
a) pl=3-(3-1)-1=0; p2=3+(4-3)+1=5;
verify pattern annu in text annua with 1 error => found !
b) pl=3-(3-1)-2=-1; p2=3+(6-3)+2=8;
verify pattern annual in text annual_C => found !
c) report end positions (6,7,8)

Initialization for (12,1);
n=n0®; in=1; n=n3; cand=true;
While loop;
a) pl=12-(1-1)-1=11; p2=12+(4-1)+1=16;
verify pattern annu in text _anniv with 1 error => found !
b) pl=12-(1-1)-2=10; p2=12+(6-1)+2=19;
verify pattern annual in text M_annivers => NOT found !

5.6 Summary

e Filtering algorithms prevent a large portion of the text from being looked at.
o The larger a = k/m, the less efficient filtering algorithms become.

o Filtering algorithms based on the pigeonhole principle need an exact, multi-pattern search algorithm and
a verification capable approximate string matching algorithm.

o The PEX algorithm starts verification from short exact matches and considers longer and longer substrings
of the pattern as the verification proceeds upward in the tree.
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