
4 NGS read mapping

This exposition has been developed by Knut Reinert. It is based on the following sources, which are all
recommended reading:

1. Li, H, and Homer, N. (2010) A survey of sequence alignment algorithms for next-generation sequencing. Briefings
in Bioinformatics 11 (5) (September 21): 473-483.

2. Holtgrewe, M., Emde A.-K., Weese D., Reinert K. (2011) A Novel And Well-Defined Benchmarking Method
For Second Generation Read Mapping. BMC Bioinformatics 12 (1): 210.

The term read mapping has itself established since a couple of years for another, well studied problem, namely
approximate string matching with certain application driven constraints.

The constraints are:

• usually DNA (or RNA) is considered (which means a small alphabet size).

• we have to map short strings (about 50 to 3000 bases) to a large string (billions of bases).

• there are relatively few errors allowed (usually around 3-4%, some application might go up to 10%).

• the problem sizes are very large (billions of small strings map to a string of size up to several billion
characters).

4.1 Second-generation sequencing technologies

Introduction
Sensitivity Calculation

The Algorithm
Results

Motivation

Second-generation sequencing technologies

454 FLX/Roche Solexa/Illumina SOLiD/ABI

Sequencing
approach

pyrophosphate
release

bridge amplification ligation

Read lengths 400–500bp 36bp 35bp or 25bp (MP)

Mate pairs yes yes yes

Output/Run 400–600Mbp in 10h > 1.5Gbp in 2.5d 3–4Gbp in 6d

Accuracy
depends on

homopolymer length
(> 6 problematic)

nucleotide position
in the read

nucleotide position
in the read

GS FLX Titanium
Series

Genome Analyzer 2 SOLiD System 2.0
Analyzer

Weese D, Emde AK, Rausch T, Döring A, and Reinert K RazerS - Fast Read Mapping with Sensitivity ControlThe last slide was ”old”.

Illuminas HiSeq 2500 now produces at least 600 Gbp in about 12 days. That is about one billion reads, of length
100-150 bp in mate pairs. In addition, the end of higher throughput does not seem to be reached.

In addition, new technologies allow the sequencing of single molecules.

What are the applications for which this technology is currently used?

Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35 4001

4.2 Second-generation sequencing applications

Resequencing

De novo assembly

Metagenomics Epigenetics

Alt. splicing

ChIP-Seq

RNA-SequencingGenome Assembly

Expression Profiling

DNA Methylation

Genome Comparison

SNPs

RearrangementsmicroRNA

4.3 RNA-Sequencing

How RNA-Seq works:

• RNA isolatation

• Reverse transcription to cDNA

• Fragmentation

• (Size selection)

• Sequencing

RNA-Seq applications:

• Expression profiling: Quantify gene expression levels

• Alternative splicing: Which mRNAs are generated from the same gene?

• microRNA: Where is the genomic source, which genes are regulated?

4002 Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35

4.4 RNA-Seq - Alternative Splicing

Transcription

Splicing

Translation

DNA

pre-mRNA

mRNA

protein

5' UTR 3' UTR
Open reading

frame

Exon

Introns

Promoter
Enhancers

Exon Exon Exon Exon

Two approaches to determine splice variants:

1. Cut the genome at known splice sites and map mRNA reads onto combinations of merged genome fragments

2. Map as many mRNA reads as possible onto the genome and use coverage and known introns to detect new splice
sites. Proceed as above.

Second Approacha:

• Map reads

• Assemble uniquely mapped reads

• Generate possible splices

• Try to map the non-uniquely mapped reads onto splices

aTrapnell C, Pachter L, Salzberg SL. (2009) TopHat: discovering splice junc-
tions with RNA-Seq, Bioinformatics

[19:40 21/4/2009 Bioinformatics-btp120.tex] Page: 1106 1105–1111

C.Trapnell et al.

While the QPALMA pipeline has organizational similarities to
TopHat, there are major differences. First, QPALMA uses a training
step that requires a set of known junctions from the reference
genome. Second, the QPALMA pipeline’s initial mapping phase
uses Vmatch (Abouelhoda et al., 2004), a general-purpose suffix
array-based alignment program. Vmatch is a flexible, fast aligner,
but because it is not designed to map short reads on machines
with small main memories, it is substantially slower than other
specialized short-read mappers. De Bono et al. report that Vmatch
maps reads at around 644 400 reads per CPU hour against the
120 Mbp Arabidopsis thaliana genome. QPALMA’s runtime appears
to be dominated by its splice site scoring algorithm; its authors
estimate that mapping 71 million RNA-Seq reads to A.thaliana
would take 400 CPU hours, which is ∼180 000 reads per CPU hour.

In this article, we describe TopHat, a software package that
identifies splice sites ab initio by large-scale mapping of RNA-Seq
reads. TopHat maps reads to splice sites in a mammalian genome at
a rate of ∼2.2 million reads per CPU hour. Rather than filtering out
possible splice sites with a scoring scheme, TopHat aligns all sites,
relying on an efficient 2-bit-per-base encoding and a data layout
that effectively uses the cache on modern processors. This strategy
works well in practice because TopHat first maps non-junction
reads (those contained within exons) using Bowtie (http://bowtie-
bio.sourceforge.net), an ultra-fast short-read mapping program
(Langmead et al., 2009). Bowtie indexes the reference genome
using a technique borrowed from data-compression, the Burrows–
Wheeler transform (Burrows and Wheeler, 1994; Ferragina and
Manzini, 2001). This memory-efficient data structure allows Bowtie
to scan reads against a mammalian genome using around 2 GB of
memory (within what is commonly available on a standard desktop
computer). Figure 1 illustrates the workflow of TopHat.

2 METHODS
TopHat finds junctions by mapping reads to the reference in two phases. In the
first phase, the pipeline maps all reads to the reference genome using Bowtie.
All reads that do not map to the genome are set aside as ‘initially unmapped
reads’, or IUM reads. Bowtie reports, for each read, one or more alignment
containing no more than a few mismatches (two, by default) in the 5′-most s
bases of the read. The remaining portion of the read on the 3′ end may have
additional mismatches, provided that the Phred-quality-weighted Hamming
distance is less than a specified threshold (70 by default). This policy is
based on the empirical observation that the 5′ end of a read contains fewer
sequencing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie
to report more than one alignment for a read (default = 10), and suppresses
all alignments for reads that have more than this number. This policy allows
so called ‘multireads’ from genes with multiple copies to be reported, but
excludes alignments to low-complexity sequence, to which failed reads often
align. Low complexity reads are not included in the set of IUM reads; they
are simply discarded.

TopHat then assembles the mapped reads using the assembly module
in Maq (Li et al., 2008). TopHat extracts the sequences for the resulting
islands of contiguous sequence from the sparse consensus, inferring them
to be putative exons. To generate the island sequences, Tophat invokes the
Maq assemble subcommand (with the -s flag) which produces a compact
consensus file containing called bases and the corresponding reference bases.
Because the consensus may include incorrect base calls due to sequencing
errors in low-coverage regions, such islands may be a ‘pseudoconsensus’:
for any low-coverage or low-quality positions, TopHat uses the reference
genome to call the base. Because most reads covering the ends of exons will
also span splice junctions, the ends of exons in the pseudoconsensus will

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The IUM reads are indexed and aligned
to these splice junction sequences.

initially be covered by few reads, and as a result, an exon’s pseudoconsensus
will likely be missing a small amount of sequence on each end. In order to
capture this sequence along with donor and acceptor sites from flanking
introns, TopHat includes a small amount of flanking sequence from the
reference on both sides of each island (default = 45 bp).

Because genes transcribed at low levels will be sequenced at low coverage,
the exons in these genes may have gaps. TopHat has a parameter that controls
when two distinct but nearby exons should be merged into a single exon.
This parameter defines the length of the longest allowable coverage gap in
a single island. Because introns shorter than 70 bp are rare in mammalian
genomes such as mouse (Pozzoli et al., 2007), any value less than 70 bp for
this parameter is reasonable. To be conservative, the TopHat default is 6 bp.

To map reads to splice junctions, TopHat first enumerates all canonical
donor and acceptor sites within the island sequences (as well as their
reverse complements). Next, it considers all pairings of these sites that could
form canonical (GT–AG) introns between neighboring (but not necessarily
adjacent) islands. Each possible intron is checked against the IUM reads for
reads that span the splice junction, as described below. By default, TopHat
only examines potential introns longer than 70 bp and shorter than 20 000 bp,
but these default minimum and maximum intron lengths can be adjusted
by the user. These values describe the vast majority of known eukaryotic
introns. For example, more than 93% of mouse introns in the UCSC known
gene set fall within this range. However, users willing to make a small
sacrifice in sensitivity will see substantially lower running time by reducing
the maximum intron length. To improve running times and avoid reporting
false positives, the program excludes donor–acceptor pairs that fall entirely
within a single island, unless the island is very deeply sequenced. An example
of a ‘single island’ junction is illustrated in Figure 2. The gene shown has
two alternate transcripts, one of which has an intron that coincides with the

1106

Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35 4003

Resequencing

De novo assembly

Metagenomics Epigenetics

Alt. splicing

ChIP-Seq

RNA-SequencingGenome Assembly

Expression Profiling

DNA Methylation

Genome Comparison

SNPs

RearrangementsmicroRNA

4.5 Genome Comparison

• Sequence paired-end reads of an unknown genome (sample)

• Map them onto a known reference genome (target)

• Search for small mutations (SNPs) or large structural variations (rearrangements) between them

A deletion in the sample induces pairs of reads to be farther apart than predicted.

4004 Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35

Inversions, deletions, translocations can also be detected.12

4.6 Other applications

ChIP-Sequencing3
Metagenomics4

Fundamental to almost all of these applications is the following problem:

Problem 1 (Read Mapping Problem). Given a set of read sequences R, a reference sequence G, and a distance
k ∈N. Find all pairs (r, g) with r ∈ R, g is substring of G and dist(r, g) ≤ k.

Common distance measures are Hamming distance or edit distance.
The pairs (r, g) are called matches of r.

However, depending on the application, we have to adapt the problem definition.

4.7 Objective functions

By now it should be clear to you, that the term read mapping subsumes a number of different objective
functions. In the normal case we want to find the approximate occurrences of a complete read, that is, conduct
a semi-global alignment.

If we have for example RNA reads, then the read may corresponds to several genomic loci that have been
spliced together. In this case we speak of split alignment to distinguish it from local alignment. In split
alignment we want to find the complete read, whereas this is not necessary in local alignment.

The problem of split alignment can be further subdivided depending on the decision whether we allow parts
of the split read to be reverse complemented (e.g. assembly error), be missing, or out of order (e.g. genomics
insertions or deletions).

Usually split read mapping is reduced to several subproblems of normal read mapping.

Finally, a distinction is made whether the approximate string matching supports (weighted) edit distance or
only the Hamming distance.

While the edit distance is preferable, it makes the problem computationally harder. Often you will find in read
mapping heuristics some ”in-between” formulations (e.g. supports mismatches and up to 2 insertions).

Be aware of such limitations.
1Korbel JO, Urban AE, Affourtit JP, et al. (2007) Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome, Science
2Bashir A, Volik S, Collins C, Bafna V, Raphael BJ. (2008) Evaluation of paired-end sequencing strategies for detection of genome rearrangements

in cancer, PLoS computational biology
4Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone

methylations in the human genome, Cell
4Poinar HN, Schuster SC, et al. (2006) Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA, Science

Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35 4005

If we have a fixed objective function for our special approximate string matching problem, we can still make
distinctions about the set of matches we want to find. A reasonable distinction could be the tasks of finding:

1. all matches with up to k errors.

2. all best matches.

3. any best match.

Doing this of course implies to have a good definition, what we actually mean with a match?

Have a look at the following situation:

4.8 Benchmarking

reference C AGA CTC C C AA CTGTC A . . . C A GA CTC C C C C C AA CTGTC A

alignments T C C C AA C TC C C - - - A A C

? T - C C C AA C

?? TC C C AA - C
Different kind of approximate matches.

Say, we want to find the best two matches of the read in the reference sequence, with an edit distance of up to
3. Both locations in the reference sequence are shown. The row alignments shows two alignments of the read
to the reference sequence that appear to be optimal. However, the alignments in the rows below have a lower
edit distance than the right one.

Common sense would tell us that the alignments in the left column are not significantly different, though. Each
alignment with distance k induces alignments with distance at most k + 2 by aligning the leftmost/rightmost
base one more position to the left/right and introducing a gap.

Repeats are another issue. Consider the tandem repeats in the below figure.

reference . . . C G A C C C A C C A C GA C C C A C C A C GA C C C A C C A . . .

C G A C C C A C C A C GA C C C A C C A

C GA C C C A C C A C GA C C C A C C A
Large period repeat.

Intuitively, we can identify the two distinct alignments in this situation. Now look at a tandem repeat with a
shorter period:

reference . . . C A A C AA C AA C AA C AA C AA C AA C AA C AA . . .

C A A C AA C AA C AA

C AA C AA C AA C AA

C AA C AA C AA C AA

C AA C AA C AA C AA

C AA C AA C AA C AA

C AA C AA C AA C AA
Small period repeat.

4006 Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35

Do we really want to find all those alignments?

Counting alignments in this way would require a read mapper to find lots of positions in repeat regions. This
is not desirable since reads from long tandem repeat regions would get a higher weight with this counting
scheme than reads from short tandem repeat regions or reads from non-repeat regions.

Only weighting each found match with 1/n (where n is the number of positions the read aligns at) is also
deficient (why?).

Hence it is more desirable to define when two matches are considered the same and when they should be
counted separately.

Without giving the details, one can define an equivalence relation on the set of matches, which can be depicted
as follows as an error landscape.

d
is
ta
n
ce

match end position
Error landscape.

Flooding this landscape to the respective error level gives a number of intervals, which in turn can be used to
define the specificity and sensitivity of read mappers. In the benchmark it is sufficient to return one endposition
within the interval.

Some of the intervals will be labelled optimal, if they contain a matching position with the minimal distance
(e.g. edit or hamming). If we benchmark read mapping application with the goal find any best, then it should
return an alignment ending in one of those intervals. If we have the goal find all best, the read mapper should
return all optimal intervals, etc.

This can now be used to make comprehensive comparisons between different methods to compare their
performance.

As an evaluation metric we use the number of normalized found intervals.

This is defined as follows: Each read gives at most one point. If a read matches at n locations (i.e. intervals),
each found location gives 1/n point. To get percentages, the number of achieved points is divided by the
number of reads and multiplied by 100.

Have a look at results of recent read mappers (2011) for the three different categories (Illumina reads of
Drosophila Melanogaster, 100 bp length), but mind that those plots do not give the run times.

Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35 4007

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

Bowtie
Bowtie*

Bwa
Razers

Shrimp2
Soap2

Soap2*

Benchmark any best.

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

Bowtie
Bowtie*

Bwa
Razers

Shrimp2
Soap2

Soap2*

Benchmark all best.

4008 Read mapping, by David Weese/Knut Reinert, May 2, 2012, 20:35

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8

no
rm

al
iz

ed
 fo

un
d

in
te

rv
al

s
[%

]

error rate [%]

Bowtie
Bowtie*

Bwa
Razers

Shrimp2
Soap2

Soap2*

Benchmark all.

4.9 Computational paradigms

Lets go back to algorithmic paradigms used in read mapping algorithms.

Given the large data, obviously all algorithms use some string indices to preprocess the reads, the genome, or
both. The indices can be used directly for searching as in the case of the enhanced suffix array or Burrows
Wheeler transform (BWT), or they are used to filter out regions that do not contain matches (as in the case of
(gapped) q-gram indices).

You have already encountered a simple filter that is based on a q-gram index and uses a simple version of the
q-gram lemma. This paradigm is called q-gram counting. We will sketch a more advanced algorithm. First, we
will talk about q-gram pidgeonhole filter and a hieracharchical verification scheme introduced by Navarro.

5000 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, May 2, 2012, 20:35

5 Fast filtering algorithms

This exposition is based on

1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 6.5, pages 162ff.

We present the hierarchical filtering approach called PEX of Navarro and Baeza-Yates.

5.1 Filtering algorithms

The idea behind filtering algorithms is that it might be easier to check that a text position does not match a
pattern string than to verify that it does.

Filtering algorithms filter out portions of the text that cannot possibly contain a match, leaving positions that
could match.

The potential match positions then need to be verified with another algorithm like for example the bit-parallel
algorithm of Myers (BPM).

Filtering algorithms are very sensitive to the error level α := k/m since this normally affects the amount of text
that can be discarded from further consideration. (m = pattern length, k = errors.)

If most of the text has to be verified, the additional filtering steps are an overhead compared to the strategy of
just verifying the pattern in the first place.

On the other hand, if large portions of the text can be discarded quickly, then the filtering results in a faster
search.

Filtering algorithms can improve the average-case performance (sometimes dramatically), but not the worst-
case performance.

5.2 The pigeonhole principle

Assume that we want to find all occurrences of a pattern P = p1, . . . , pm in a text T = t1, . . . , tn that have an edit
distance of at most k.

If we divide the pattern into k + 1 pieces P = p1, . . . , pk+1, then at least one of the pattern pieces match without
error.

There is a more general version of this principle first formalized by Myers in 1994:

Lemma 2. Let Occ match P with k errors, P = p1, . . . , p j be a concatenation of subpatterns, and a1, . . . , a j be nonnegative
integers such that A =

∑ j
i=1 ai. Then, for some i ∈ 1, . . . , j, Occ includes a substring that matches pi with baik/Ac errors.

Proof: Exercise.

So the basic procedure is:

1. Divide: Divide the pattern into k + 1 pieces of approximately the same length.

2. Search: Search all the pieces simultaneously with a multi-pattern string matching algorithm. According
to the above lemma, each possible occurrence will match at least one of the pattern pieces.

3. Verify: For each found pattern piece, check the neighborhood with a verification algorithm that is able to
detect an occurrence of the whole pattern with edit distance at most k. Since we allow indels, if pi1 . . . pi2
matches the text t j . . . t j+i2−i1 , then the verification has to consider the text area t j−(i1−1)−k . . . t j+(m−i1)+k, which
is of length m + 2k.

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, May 2, 2012, 20:35 5001

5.3 An example

Say we want to find the pattern annual in the texts

t1 = any annealing and

t2 = an unusual example with numerous veri f ications

with at most 2 errors.

1. Divide: We divide the pattern annual into p1 = an, p2 = nu, and p3 = al. One of these subpattern has to
match with 0 errors.

2. Search: We search for all subpatterns:

1: searching for an: in t_1: find positions 1, 5

in t_2: find position 1

2: searching for nu: in t_1: find no positions

in t_2: find positions 5, 25

3: searching for al: in t_1: find position 9

in t_2: find position 9

3. Verification: We have to verify 3 positions in t1, and 4 positions in t2, to find 3 occurrences in t1 and none
in t2.

5.4 Hierarchical verification

The toy example makes clear that many verifications can be triggered that are unsuccesssful and that many
subpatterns can trigger the same verification. Repeated verfications can be avoided by carefully sorting the
occurrences of the pattern.

It was shown by Baeza-Yates and Navarro that the running time is dominated by the multipattern search for

error levels α = k/m below 1/(3 log
|Σ|m). In this region, the search cost is about O(kn

log
|Σ| m
m). For higher error

levels, the cost for verifications starts to dominate, and the filter efficiency deteriorates abruptly.

Baeza-Yates and Navarro introduced the idea of hierarchical verification to reduce the verification costs, which
we will explain next. Then we will work out more details of the three steps.

Navarro and Baeza-Yates use Lemma 2 for a hierarchical verification. The idea is that, since the verification cost
is high, we pay too much for verifying the whole pattern each time a small piece matches. We could possibly
reject the occurrence with a cheaper test for a shorter pattern.

So, instead of directly dividing the pattern into k + 1 pieces, we do it hierarchically. We split the pattern first
in two pieces and search for each piece with bk/2c errors, following Lemma 2. The halves are then recursively
split and searched until the error rate reaches zero, i. e. we can search for exact matches.

With hierarchical verification the area of applicability of the filtering algorithm grows to α < 1/ log
|Σ|m, an

error level three times as high as for the naive paritioning and verification. In practice, the filtering algorithm
pays off for α < 1/3 for medium long patterns.

Example. Say we want to find the pattern P = aaabbbcccddd in the text T = xxxbbbxxxxxxwith at most k = 3
differences. The pattern is split into four pieces p1 = aaa, p2 = bbb, p3 = ccc, p4 = ddd. We search with k = 0
errors in level 2 and find bbb.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 aaabbb cccddd with k=1 errors

/ \ / \

level 2 aaa bbb ccc ddd with k=0 errors

Now instead of verifying the complete pattern in the complete text (at level 0) with k = 3 errors, we only have
to check a slightly bigger pattern (aaabbb) at level 1 with one error. This is much cheaper. In this example we
can decide that the occurrence bbb cannot be extended to a match.

5002 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, May 2, 2012, 20:35

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 AAABBB cccddd with k=1 errors

/ \ / \

level 2 aaa BBB ccc ddd with k=0 errors

5.5 The PEX algorithm

Divide: Split pattern into k + 1 pieces, such that each piece has equal probability of occurring in the text. If no
other information is available, the uniform distribution is assumed and hence the pattern is divided in pieces
of equal length.

Build Tree: Build a tree of the pattern for the hierarchical verification. If k + 1 is not a power of 2, we try to
keep the binary tree as balanced as possible.

Each node has two members f rom and to indicating the first and the last position of the pattern piece represented
by it. The member err holds the number of allowed errors. A pointer myParent leads to its parent in the tree.
(There are no child pointers, since we traverse the tree only from the leafs to the root.) An internal variable le f t
holds the number of pattern pieces in the left subtree. idx is the next leaf index to assign. plen is the length of a
pattern piece.

Algorithm CreateTree generates a hierarchical verification tree for a single pattern. (Lines 12 and 14 are justified
by Lemma 2.)

(1) CreateTree(p = pipi+1 . . . p j, k, myParent, idx, plen)
(2) // Note: the initial call is: CreateTree (p, k, nil, 0, bm/(k + 1)c)
(3) Create new node node
(4) f rom(node) = i
(5) to(node) = j
(6) le f t = d(k + 1)/2e
(7) parent(node) = myParent
(8) err(node) = k
(9) if k = 0

(10) then lea fidx = node
(11) else
(12) lk = b(le f t · k)/(k + 1)c
(13) CreateTree(pi . . . pi+le f t·plen−1, lk, node, idx, plen)
(14) rk = b((k + 1 − le f t) · k)/(k + 1)c
(15) CreateTree(pi+le f t·plen . . . p j, rk, node, idx + le f t, plen)
(16) fi

Example: Find the pattern P = annual in the text T = annual CPM anniversarywith at most k = 2 errors. First
we build the tree with k + 1 = 3 leaves. Below we write at each node ni the variables (f rom, to, error) .

"annual" n4=(1,6,2)

/ \

"annu" n3=(1,4,1) \

/ \ \

"an" n0=(1,2,0) "nu" n1=(3,4,0) "al" n2=(5,6,0)

| | |

leaf 0 leaf 1 leaf 2

Search: After constructing the tree, we have k + 1 leafs lea fi. The k + 1 subpatterns

{ p f rom(n), . . . , pto(n), n = lea fi, i ∈ {0, . . . , k} }

are sent as input to a multi-pattern search algorithm (e. g. Aho-Corasick, Wu-Manbers, or SBOM). This algorithm
gives as output a list of pairs (pos, i) where pos is the text position that matched and i is the number of the piece
that matched.

The PEX algorithm performs verifications on its way upward in the tree, checking the presence of longer and
longer pieces of the pattern, as specified by the nodes.

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, May 2, 2012, 20:35 5003

(1) Search phase of algorithm PEX
(2) for (pos, i) ∈ output of multi-pattern search do
(3) n = lea fi; in = f rom(n); n = parent(n);
(4) cand = true;
(5) while cand = true and n , nil do
(6) p1 = pos − (in − f rom(n)) − err(n);
(7) p2 = pos + (to(n) − in) + err(n);
(8) verify text tp1 . . . tp2 for pattern piece p f rom(n) . . . pto(n)
(9) allowing err(n) errors;

(10) if pattern piece was not found
(11) then cand = f alse;
(12) else n = parent(n);
(13) fi
(14) od
(15) if cand = true
(16) then report the positions where the whole p was found;
(17) fi
(18) od

We search for annual in annual CPM anniversary. We constructed the tree for annual. A multi-pattern search
algorithm finds: (1, 1), (12, 1), (3, 2), (5, 3). (Note that leaf i corresponds to pattern pi+1). For each of these
positions we do the hierarchical verification:

Initialization for (1,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=1-(1-1)-1=0; p2=1+(4-1)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=1-(1-1)-2=-1; p2=1+(6-1)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

Initialization for (3,2);

n=n1; in=3; n=n3; cand=true;

While loop;

a) p1=3-(3-1)-1=0; p2=3+(4-3)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=3-(3-1)-2=-1; p2=3+(6-3)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

Initialization for (12,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=12-(1-1)-1=11; p2=12+(4-1)+1=16;

verify pattern annu in text _anniv with 1 error => found !

b) p1=12-(1-1)-2=10; p2=12+(6-1)+2=19;

verify pattern annual in text M_annivers => NOT found !

5.6 Summary

• Filtering algorithms prevent a large portion of the text from being looked at.

• The larger α = k/m, the less efficient filtering algorithms become.

• Filtering algorithms based on the pigeonhole principle need an exact, multi-pattern search algorithm and
a verification capable approximate string matching algorithm.

• The PEX algorithm starts verification from short exact matches and considers longer and longer substrings
of the pattern as the verification proceeds upward in the tree.

	Second-generation sequencing technologies
	Second-generation sequencing technologies
	Second-generation sequencing applications
	RNA-Sequencing
	RNA-Seq - Alternative Splicing
	Genome Comparison
	Other applications
	Objective functions
	Benchmarking
	Computational paradigms
	Filtering algorithms
	The pigeonhole principle
	An example
	Hierarchical verification
	The PEX algorithm
	Summary

