- If u ≥ 0, choose i ∈ I such that u_i < 0 and define the direction d = -A_{I*}⁻¹e_i, where e_i is the *i*-th unit basis vector in ℝ^I.
- Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If $Ad \leq 0$, the largest $\lambda \geq 0$ for which $v + \lambda d$ is still feasible is

$$\lambda^* = \min\{\frac{b_p - A_{p*}v}{A_{p*}d} \mid p \in \{1, \dots, m\}, A_{p*}d > 0\}.$$
 (PIV)

Let this minimum be attained at index *k*. Then $k \notin I$ because $A_{I*}d = -e_i \leq 0$.

Define $I' = (I \setminus \{i\}) \cup \{k\}$, which corresponds to the vertex $v + \lambda^* d$.

Replace I by I' and repeat the iteration.

2. If $Ad \leq 0$, then $v + \lambda d$ is feasible, for all $\lambda \geq 0$. Moreover,

$$c^{T}d = -c^{T}A_{l*}^{-1}e_{l} = -u^{T}e_{l} = -u_{l} > 0.$$

Thus the objective function can be increased along *d* to infinity and the problem is unbounded.

Termination and complexity

- The method terminates if the indices *i* and *k* are chosen in the right way (such choices are called *pivoting rules*).
- Following the rule of Bland, one can choose the smallest *i* such that u_i < 0 and the smallest *k* attaining the minimum in (PIV).
- For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in m+n (e.g. Klee-Minty cubes).
- Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex : Phase I

• In order to find an *initial feasible basis*, consider the auxiliary linear program

$$\max\{y \mid Ax - by \le 0, \ -y \le 0, \ y \le 1\},$$
 (Aux)

where y is a new variable.

- Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing I = K ∪ {m + 1}. The corresponding basic feasible solution is 0.
- Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the
 optimum value has to be 1.
- If I' is the final feasible basis of (Aux), then K' = I' \ {m+2} can be used as an initial feasible basis for (LP).

Δ

١

_k

Application: Metabolic networks

Stoichiometric matrix

• Metabolites (internal) ~> rows

		/1	/	~	/
 Biochemical reactions ~> columns 		В		0	
Reaction $kA + IC \xrightarrow{j} mE + nH$	gives	С		-1	
		D		0	
		Е		т	
		F		0	
		G		0	
		Н	\	п	/

Flux cone

- Flux balance: Sv = 0
- Irreversibiliy of some reactions: $v_i \ge 0, i \in Irr$.
- Steady-state flux cone $C = \{v \in \mathbb{R}^n \mid Sv = 0, v_i \ge 0, \text{ for } i \in Irr\}$

Flux balance analysis

• Use linear programming to study flux distribution in a cell

$$\max\{c^{\mathsf{T}}v \mid Sv = 0, \ v_{\min} \leq v \leq v_{\max}\}$$

- Objective function
 - Maximize biomass production
 - Maximize metabolite production (e.g. biofuel)
- Metabolic engineering