- If $u \nsupseteq 0$, choose $i \in I$ such that $u_{i}<0$ and define the direction $d \stackrel{\text { def }}{=}-A_{l *}^{-1} e_{i}$, where e_{i} is the i-th unit basis vector in \mathbb{R}^{\prime}.
- Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If $A d \not \leq 0$, the largest $\lambda \geq 0$ for which $v+\lambda d$ is still feasible is

$$
\begin{equation*}
\lambda^{*}=\min \left\{\left.\frac{b_{p}-A_{p *} V}{A_{p *} d} \right\rvert\, p \in\{1, \ldots, m\}, A_{p *} d>0\right\} \tag{PIV}
\end{equation*}
$$

Let this minimum be attained at index k. Then $k \notin I$ because $A_{I *} d=-e_{i} \leq 0$.
Define $I^{\prime}=(I \backslash\{i\}) \cup\{k\}$, which corresponds to the vertex $v+\lambda^{*} d$.
Replace I by I^{\prime} and repeat the iteration.
2. If $A d \leq 0$, then $v+\lambda d$ is feasible, for all $\lambda \geq 0$. Moreover,

$$
c^{T} d=-c^{T} A_{l *}^{-1} e_{i}=-u^{T} e_{i}=-u_{i}>0
$$

Thus the objective function can be increased along d to infinity and the problem is unbounded.

Termination and complexity

- The method terminates if the indices i and k are chosen in the right way (such choices are called pivoting rules).
- Following the rule of Bland, one can choose the smallest i such that $u_{i}<0$ and the smallest k attaining the minimum in (PIV).
- For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in $m+n$ (e.g. Klee-Minty cubes).
- Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex : Phase I

- In order to find an initial feasible basis, consider the auxiliary linear program

$$
\begin{equation*}
\max \{y \mid A x-b y \leq 0,-y \leq 0, \quad y \leq 1\} \tag{Aux}
\end{equation*}
$$

where y is a new variable.

- Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing $I=K \cup\{m+1\}$. The corresponding basic feasible solution is 0 .
- Apply the Simplex method to (Aux). If the optimum value is 0 , then (LP) is infeasible. Otherwise, the optimum value has to be 1 .
- If I^{\prime} is the final feasible basis of (Aux), then $K^{\prime}=I^{\prime} \backslash\{m+2\}$ can be used as an initial feasible basis for (LP).

Application: Metabolic networks

Stoichiometric matrix

- Metabolites (internal) \rightsquigarrow rows
- Biochemical reactions \rightsquigarrow columns

$$
\text { Reaction } \quad k A+I C \xrightarrow{j} m E+n H
$$

A
B
C
D
E
F
G
$H$$\quad\left(\begin{array}{rrr}\ldots & -k & \ldots \\ & 0 & \\ & -l & \\ & 0 & \\ & m & \\ & 0 & \\ & 0 & \\ & & \\ & & \end{array}\right)$

Flux cone

- Flux balance: $S v=0$
- Irreversibiliy of some reactions: $v_{i} \geq 0, i \in$ Irr.
- Steady-state flux cone $C=\left\{v \in \mathbb{R}^{n} \mid S v=0, v_{i} \geq 0\right.$, for $\left.i \in \operatorname{Irr}\right\}$

Flux balance analysis

- Use linear programming to study flux distribution in a cell

$$
\max \left\{c^{T} v \mid S v=0, \quad v_{\min } \leq v \leq v_{\max }\right\}
$$

- Objective function
- Maximize biomass production
- Maximize metabolite production (e.g. biofuel)
- Metabolic engineering

