Polyhedra

- Hyperplane $H = \{x \in \mathbb{R}^n \mid a^T x = \beta\}, a \in \mathbb{R}^n \setminus \{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\overline{H} = \{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$
- Polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- Polytope $P = \{x \in \mathbb{R}^n \mid Ax \le b, l \le x \le u\}, l, u \in \mathbb{R}^n$
- Polyhedral cone $P = \{x \in \mathbb{R}^n \mid Ax \le 0\}$

The feasible set

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \overline{H}, H \cap P \neq \emptyset$ (Supporting hyperplane)
- $F = P \cap H$ (Face)
- dim(*F*) = 0 (*Vertex*)
- dim(*F*) = 1 (*Edge*)
- $\dim(F) = \dim(P) 1$ (Facet)
- *P pointed: P* has at least one vertex.

Illustration

Simplex Algorithm: Geometric view

Linear optimization problem

$$\max\{c^T x \mid Ax \le b, x \in \mathbb{R}^n\}$$
(LP)

Simplex-Algorithm (Dantzig 1947)

- 1. Find a vertex of P.
- 2. Proceed from vertex to vertex along edges of *P* such that the objective function $z = c^T x$ increases.
- 3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which *z* is unbounded.

Basic solutions

- $Ax \leq b, A \in \mathbb{R}^{m \times n}, rank(A) = n.$
- $M = \{1, ..., m\}$ row indices, $N = \{1, ..., n\}$ column indices
- For $I \subseteq M, J \subseteq N$ let A_{IJ} denote the submatrix of A defined by the rows in I and the columns in J.
- $I \subseteq M$, |I| = n is called a *basis of A* iff $A_{I*} = A_{IN}$ is non-singular.
- In this case, $v = A_{l*}^{-1} b_l$, where b_l is the subvector of *b* defined by the indices in *l*, is called a *basic solution*.
- If in addition v satisfies $Ax \le b$, then v is called a *basic feasible solution* and I is called a *feasible basis*.

Algebraic characterization of vertices

Theorem

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ the following holds:

- 1. *P* has at least one vertex if and only if rank(A) = n.
- 2. A vector $v \in \mathbb{R}^n$ is a vertex of *P* if and only if it is a basic feasible solution of $Ax \leq b$, for some basis *I*.
- 3. If rank(A) = n, then for any $c \in \mathbb{R}^n$, either the maximum value of $z = c^T x$ for $x \in P$ is attained at a vertex of *P* or *z* is unbounded on *P*.

Remark

It follows from (2) that a polyhedron has at most finitely many vertices.

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

- Suppose rank(A) = n (otherwise apply Gaussian elimination).
- Suppose *I* is a feasible basis with corresponding vertex $v = A_{l*}^{-1}b_l$.
- Compute $u^T \stackrel{\text{def}}{=} c^T A_{l*}^{-1}$ (vector of *n* components indexed by *l*).
- If $u \ge 0$, then v is an optimal solution, because for each feasible solution x

$$c^{\mathsf{T}}x = u^{\mathsf{T}}A_{I*}x \leq u^{\mathsf{T}}b_{I} = u^{\mathsf{T}}A_{I*}v = c^{\mathsf{T}}v.$$