Polyhedra

- Hyperplane $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\}, a \in \mathbb{R}^{n} \backslash\{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\bar{H}=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \beta\right\}$
- Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Polytope $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, I \leq x \leq u\right\}, I, u \in \mathbb{R}^{n}$
- Polyhedral cone $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq 0\right\}$

The feasible set

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \bar{H}, H \cap P \neq \emptyset \quad$ (Supporting hyperplane)
- $F=P \cap H \quad$ (Face)
- $\operatorname{dim}(F)=0 \quad$ (Vertex)
- $\operatorname{dim}(F)=1 \quad$ (Edge)
- $\operatorname{dim}(F)=\operatorname{dim}(P)-1 \quad$ (Facet)
- P pointed: P has at least one vertex.

Illustration

Simplex Algorithm: Geometric view

Linear optimization problem

$$
\begin{equation*}
\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\} \tag{LP}
\end{equation*}
$$

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of P.
2. Proceed from vertex to vertex along edges of P such that the objective function $z=c^{T} x$ increases.
3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which z is unbounded.

Basic solutions

- $A x \leq b, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n$.
- $M=\{1, \ldots, m\}$ row indices, $N=\{1, \ldots, n\}$ column indices
- For $I \subseteq M, J \subseteq N$ let $A_{I J}$ denote the submatrix of A defined by the rows in I and the columns in J.
- $I \subseteq M,|I|=n$ is called a basis of A iff $A_{I *}=A_{I N}$ is non-singular.
- In this case, $v=A_{l *}^{-1} b_{l}$, where b_{l} is the subvector of b defined by the indices in I, is called a basic solution.
- If in addition v satisfies $A x \leq b$, then v is called a basic feasible solution and I is called a feasible basis.

Algebraic characterization of vertices

Theorem

For a non-empty polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ the following holds:

1. P has at least one vertex if and only if $\operatorname{rank}(A)=n$.
2. A vector $v \in \mathbb{R}^{n}$ is a vertex of P if and only if it is a basic feasible solution of $A x \leq b$, for some basis I.
3. If $\operatorname{rank}(A)=n$, then for any $c \in \mathbb{R}^{n}$, either the maximum value of $z=c^{T} x$ for $x \in P$ is attained at a vertex of P or z is unbounded on P.

Remark

It follows from (2) that a polyhedron has at most finitely many vertices. In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

- Suppose $\operatorname{rank}(A)=n$ (otherwise apply Gaussian elimination).
- Suppose l is a feasible basis with corresponding vertex $v=A_{l *}^{-1} b_{l}$.
- Compute $u^{T} \stackrel{\text { def }}{=} c^{T} A_{l *}^{-1}$ (vector of n components indexed by $\left.I\right)$.
- If $u \geq 0$, then v is an optimal solution, because for each feasible solution x

$$
c^{T} x=u^{T} A_{l *} x \leq u^{T} b_{l}=u^{T} A_{l *} v=c^{T} v
$$

