Linear programming

Optimization Problems

• General optimization problem

$$\max\{z(x)\mid f_j(x)\leq 0, x\in D\} \text{ or } \min\{z(x)\mid f_j(x)\leq 0, x\in D\}$$
 where $D\subseteq\mathbb{R}^n, f_j:D\to\mathbb{R},$ for $j=1,\ldots,m,$ $z:D\to\mathbb{R}.$

• Linear optimization problem

$$\max\{c^Tx\mid Ax\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b,x\in\mathbb{R}^n\},\ \text{with}\ \ c\in\mathbb{R}^n,A\in\mathbb{R}^{m\times n},b\in\mathbb{R}^m$$

- *Integer* optimization problem: $x \in \mathbb{Z}^n$
- 0-1 optimization problem: $x \in \{0,1\}^n$

Feasible and optimal solutions

• Consider the optimization problem

$$\max\{z(x) \mid f_i(x) \leq 0, x \in D, j = 1, ..., m\}$$

- A feasible solution is a vector $x^* \in D \subseteq \mathbb{R}^n$ such that $f_i(x^*) \leq 0$, for all j = 1, ..., m.
- The set of all feasible solutions is called the feasible region.
- An optimal solution is a feasible solution such that

$$z(x^*) = \max\{z(x) \mid f_i(x) \leq 0, x \in D, j = 1, ..., m\}.$$

- Feasible or optimal solutions
 - need not exist,
 - need not be unique.

Transformations

- $\min\{z(x) \mid x \in S\} = -\max\{-z(x) \mid x \in S\}.$
- $f(x) \ge a$ if and only if $-f(x) \le -a$.
- f(x) = a if and only if $f(x) \le a \land -f(x) \le -a$.

Lemma

Any linear programming problem can be brought to the form

$$\max\{c^Tx\mid Ax\leq b\} \text{ or } \max\{c^Tx\mid Ax=b, x\geq 0\}.$$

Proof: a)
$$a^T x \le \beta \rightsquigarrow a^T x + x' = \beta, x' \ge 0$$
 (slack variable) b) x free $\rightsquigarrow x = x^+ - x^-, x^+, x^- \ge 0$.

Practical problem solving

- 1. Model building
- 2. Model solving
- 3. Model analysis

Example: Production problem

A firm produces n different goods using m different raw materials.

- b_i : available amount of the i-th raw material
- a_{ij} : number of units of the *i*-th material needed to produce one unit of the *j*-th good
- c_j : revenue for one unit of the j-th good.

Decide how much of each good to produce in order to maximize the total revenue \rightsquigarrow decision variables x_i .

Linear programming formulation

max
$$c_1x_1 + \cdots + c_nx_n$$

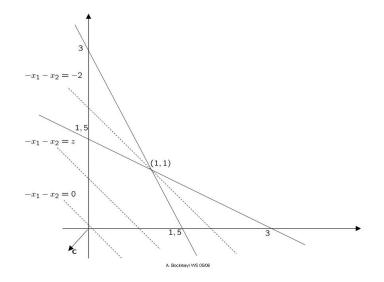
w.r.t. $a_{11}x_1 + \cdots + a_{1n}x_n \le b_1$,
 $\vdots \qquad \vdots \qquad \vdots$
 $a_{m1}x_1 + \cdots + a_{mn}x_n \le b_m$,
 $x_1, \qquad \dots \qquad , x_n \ge 0$.

In matrix notation:

$$\max\{c^Tx\mid Ax\leq b, x\geq 0\},\$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$.

Geometric illustration



max
$$x_1 + x_2$$

w.r.t. $x_1 + 2x_2 \le 3$
 $2x_1 + x_2 \le 3$