Linear programming

Optimization Problems

- General optimization problem

$$
\max \left\{z(x) \mid f_{j}(x) \leq 0, x \in D\right\} \text { or } \min \left\{z(x) \mid f_{j}(x) \leq 0, x \in D\right\}
$$

where $D \subseteq \mathbb{R}^{n}, f_{j}: D \rightarrow \mathbb{R}$, for $j=1, \ldots, m, z: D \rightarrow \mathbb{R}$.

- Linear optimization problem

$$
\max \left\{c^{T} x \mid A x \lesssim b, x \in \mathbb{R}^{n}\right\} \text {, with } c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

- Integer optimization problem: $x \in \mathbb{Z}^{n}$
- 0-1 optimization problem: $x \in\{0,1\}^{n}$

Feasible and optimal solutions

- Consider the optimization problem

$$
\max \left\{z(x) \mid f_{j}(x) \leq 0, x \in D, j=1, \ldots, m\right\}
$$

- A feasible solution is a vector $x^{*} \in D \subseteq \mathbb{R}^{n}$ such that $f_{j}\left(x^{*}\right) \leq 0$, for all $j=1, \ldots, m$.
- The set of all feasible solutions is called the feasible region.
- An optimal solution is a feasible solution such that

$$
z\left(x^{*}\right)=\max \left\{z(x) \mid f_{j}(x) \leq 0, x \in D, j=1, \ldots, m\right\}
$$

- Feasible or optimal solutions
- need not exist,
- need not be unique.

Transformations

- $\min \{z(x) \mid x \in S\}=\max \{-z(x) \mid x \in S\}$.
- $f(x) \geq a$ if and only if $-f(x) \leq-a$.
- $f(x)=a$ if and only if $f(x) \leq a \wedge-f(x) \leq-a$.

Lemma

Any linear programming problem can be brought to the form

$$
\max \left\{c^{T} x \mid A x \leq b\right\} \text { or } \max \left\{c^{T} x \mid A x=b, x \geq 0\right\}
$$

Proof: a) $a^{T} x \leq \beta \rightsquigarrow a^{T} x+x^{\prime}=\beta, x^{\prime} \geq 0$ (slack variable)
b) x free $\rightsquigarrow x=x^{+}-x^{-}, x^{+}, x^{-} \geq 0$.

1. Model building
2. Model solving
3. Model analysis

Example: Production problem

A firm produces n different goods using m different raw materials.

- b_{i} : available amount of the i-th raw material
- $a_{i j}$: number of units of the i-th material needed to produce one unit of the j-th good
- c_{j} : revenue for one unit of the j-th good.

Decide how much of each good to produce in order to maximize the total revenue \rightsquigarrow decision variables x_{j}.

Linear programming formulation

$$
\begin{array}{cc}
\max & c_{1} x_{1}+\cdots+c_{n} x_{n} \\
\text { w.r.t. } & a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& \vdots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, \quad \cdots \quad, x_{n} \geq 0
\end{array}
$$

In matrix notation:

$$
\max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}$.

Geometric illustration

\max	$x_{1}+x_{2}$
w.r.t.	$x_{1}+2 x_{2} \leq 3$
	$2 x_{1}+x_{2} \leq 3$
	$x_{1}, x_{2} \geq 0$

- Hyperplane $H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\}, a \in \mathbb{R}^{n} \backslash\{0\}, \beta \in \mathbb{R}$
- Closed halfspace $\bar{H}=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \beta\right\}$
- Polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Polytope $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, I \leq x \leq u\right\}, I, u \in \mathbb{R}^{n}$
- Polyhedral cone $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq 0\right\}$

The feasible set

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

- $P \subseteq \bar{H}, H \cap P \neq \emptyset \quad$ (Supporting hyperplane)
- $F=P \cap H \quad$ (Face)
- $\operatorname{dim}(F)=0 \quad$ (Vertex)
- $\operatorname{dim}(F)=1 \quad$ (Edge)
- $\operatorname{dim}(F)=\operatorname{dim}(P)-1 \quad$ (Facet)
- P pointed: P has at least one vertex.

Illustration

Rays and extreme rays

- $r \in \mathbb{R}^{n}$ is a ray of the polyhedron P if for each $x \in P$ the set $\{x+\lambda r \mid \lambda \geq 0\}$
is contained in P.
- A ray r of P is extreme
if there do not exist two linearly
independent rays r^{1}, r^{2} of P
such that $r=\frac{1}{2}\left(r^{1}+r^{2}\right)$.

Hull operations

- $x \in \mathbb{R}^{n}$ is a linear combination of $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ if

$$
x=\lambda_{1} x^{1}+\cdots+\lambda_{k} x^{k}, \text { for some } \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}
$$

- If, in addition

$$
\left\{\begin{array}{cc}
\lambda_{1}, \ldots, \lambda_{k} \geq 0, & \\
\lambda_{1}, \ldots, \lambda_{k} \geq 0, & \lambda_{1}+\cdots+\lambda_{k}=1 \\
\lambda_{1}+\lambda_{k}=1
\end{array}\right\} x \text { is a }\left\{\begin{array}{c}
\text { conic } \\
\text { affine } \\
\text { convex }
\end{array}\right\} \text { combination. }
$$

- For $S \subseteq \mathbb{R}^{n}, S \neq \emptyset$, the set $\operatorname{lin}(S)$ (resp. cone (S), aff($(S), \operatorname{conv}(S)$) of all linear (resp. conic, affine, convex) combinations of finitely many vectors of S is called the linear (resp. conic, affine, convex) hull of S.

Outer and inner descriptions

- A subset $P \subseteq \mathbb{R}^{n}$ is a H-polytope, i.e., a bounded set of the form

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, \text { for some } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

if and only if it is a V-polytope, i.e.,

$$
P=\operatorname{conv}(V), \text { for some finite } V \subset \mathbb{R}^{n}
$$

- A subset $C \subseteq \mathbb{R}^{n}$ is a H-cone, i.e.,

Outer

$$
C=\left\{x \in \mathbb{R}^{n} \mid A x \leq 0\right\}, \text { for some } A \in \mathbb{R}^{m \times n}
$$

if and only if it is a V-cone, i.e.,

$$
C=\operatorname{cone}(Y), \text { for some finite } Y \subset \mathbb{R}^{n}
$$

Minkowski sum

- $X, Y \subseteq \mathbb{R}^{n}$
- $X+Y=\{x+y \mid x \in X, y \in Y\}$ (Minkowski sum)

Main theorem for polyhedra
A subset $P \subseteq \mathbb{R}^{n}$ is a H-polyhedron, i.e.,
Outer

$$
P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}, \text { for some } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

if and only if it is a V-polyhedron, i.e.,

$$
P=\operatorname{conv}(V)+\operatorname{cone}(Y), \text { for some finite } V, Y \subset \mathbb{R}^{n}
$$

Theorem of Minkowski

- For each polyhedron $P \subseteq \mathbb{R}^{n}$ there exist finitely many points p^{1}, \ldots, p^{k} in P and finitely many rays $r^{1}, \ldots, r^{\prime}$ of P such that

$$
P=\operatorname{conv}\left(p^{1}, \ldots, p^{k}\right)+\operatorname{cone}\left(r^{1}, \ldots, r^{\prime}\right)
$$

- If the polyhedron P is pointed, then p^{1}, \ldots, p^{k} may be chosen as the uniquely determined vertices of P, and $r^{1}, \ldots, r^{\prime}$ as representatives of the up to scalar multiplication uniquely determined extreme rays of P.
- Special cases
- A polytope is the convex hull of its vertices.
- A pointed polyhedral cone is the conic hull of its extreme rays.

Application: Metabolic networks

Stoichiometric matrix

- Metabolites (internal) \rightsquigarrow rows
- Biochemical reactions \rightsquigarrow columns

Example network

$$
S=\left(\begin{array}{rrrrrrrrrrrr}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0
\end{array}\right) .
$$

Flux cone

- Flux balance: $S v=0$
- Irreversibiliy of some reactions: $v_{i} \geq 0, i \in$ Irr.
- Steady-state flux cone

$$
C=\left\{v \in \mathbb{R}^{n} \mid S v=0, v_{i} \geq 0, \text { for } i \in \operatorname{Ir} r\right\}
$$

- Metabolic network analysis \rightsquigarrow find $p^{1}, \ldots, p^{k} \in C$ with $C=\operatorname{cone}\left\{p^{1}, \ldots, p^{k}\right\}$.

Simplex Algorithm: Geometric view

Linear optimization problem

$$
\begin{equation*}
\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\} \tag{LP}
\end{equation*}
$$

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of P.
2. Proceed from vertex to vertex along edges of P such that the objective function $z=c^{T} x$ increases.
3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and along which z is unbounded.

Basic solutions

- $A x \leq b, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=n$.
- $M=\{1, \ldots, m\}$ row indices, $N=\{1, \ldots, n\}$ column indices
- For $I \subseteq M, J \subseteq N$ let $A_{I J}$ denote the submatrix of A defined by the rows in I and the columns in J.
- $I \subseteq M,|I|=n$ is called a basis of A iff $A_{I *}=A_{I N}$ is non-singular.
- In this case, $A_{l *}^{-1} b_{l}$, where b_{l} is the subvector of b defined by the indices in I, is called a basic solution.
- If $x=A_{l *}^{-1} b_{l}$ satisfies $A x \leq b$, then x called a basic feasible solution and I is called a feasible basis.

Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$, where $\operatorname{rank}(A)=n$, a vector $v \in \mathbb{R}^{n}$ is a vertex of P if and only if it is a basic feasible solution of $A x \leq b$, for some basis I of A.
For any $c \in \mathbb{R}^{n}$, either the maximum value of $z=c^{T} x$ for $x \in P$ is attained at a vertex of P or z is unbounded on P.

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

- Suppose $\operatorname{rank}(A)=n$ (otherwise apply Gaussian elimination).
- Suppose I is a feasible basis with corresponding vertex $v=A_{l *}^{-1} b_{l}$.
- Compute $u^{T} \stackrel{\text { def }}{=} c^{T} A_{l *}^{-1}$ (vector of n components indexed by $\left.I\right)$.
- If $u \geq 0$, then v is an optimal solution, because for each feasible solution x

$$
c^{T} x=u^{T} A_{l *} x \leq u^{T} b_{l}=u^{T} A_{l *} v=c^{T} v
$$

- If $u \nsupseteq 0$, choose $i \in I$ such that $u_{i}<0$ and define the direction $d \stackrel{\text { def }}{=}-A_{l *}^{-1} e_{i}$, where e_{i} is the i-th unit basis vector in \mathbb{R}^{\prime}.
- Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If $A d \not \leq 0$, the largest $\lambda \geq 0$ for which $v+\lambda d$ is still feasible is

$$
\begin{equation*}
\lambda^{*}=\min \left\{\left.\frac{b_{l}-A_{l *} V}{A_{l *} d} \right\rvert\, I \in\{1, \ldots, m\}, A_{l *} d>0\right\} \tag{PIV}
\end{equation*}
$$

Let this minimum be attained at index k. Then $k \notin I$ because $A_{I *} d=-e_{i} \leq 0$.
Define $I^{\prime}=(I \backslash\{i\}) \cup\{k\}$, which corresponds to the vertex $v+\lambda^{*} d$.
Replace I by I^{\prime} and repeat the iteration.
2. If $A d \leq 0$, then $v+\lambda d$ is feasible, for all $\lambda \geq 0$. Moreover,

$$
c^{T} d=-c^{T} A_{l *}^{-1} e_{i}=-u^{T} e_{i}=-u_{i}>0
$$

Thus the objective function can be increased along d to infinity and the problem is unbounded.

Termination and complexity

- The method terminates if the indices i and k are chosen in the right way (such choices are called pivoting rules).
- Following the rule of Bland, one can choose the smallest i such that $u_{i}<0$ and the smallest k attaining the minimum in (PIV).
- For most known pivoting rules, sequences of examples have been constructed such that the number of iterations is exponential in $m+n$ (e.g. Klee-Minty cubes).
- Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to work very well in practice.

Simplex : Phase I

- In order to find an initial feasible basis, consider the auxiliary linear program

$$
\begin{equation*}
\max \{y \mid A x-b y \leq 0,-y \leq 0, \quad y \leq 1\} \tag{Aux}
\end{equation*}
$$

where y is a new variable.

- Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing $I=K \cup\{m+1\}$. The corresponding basic feasible solution is 0 .
- Apply the Simplex method to (Aux). If the optimum value is 0 , then (LP) is infeasible. Otherwise, the optimum value has to be 1.
- If I^{\prime} is the final feasible basis of (Aux), then $K^{\prime}=I^{\prime} \backslash\{m+2\}$ can be used as an initial feasible basis for (LP).

Duality

- Primal problem: $z_{P}=\max \left\{\mathbf{c}^{\boldsymbol{\top}} x \mid \quad A x \leq b, \quad x \in \mathbb{R}^{n}\right\} \quad$ (P)
- Dual problem: $w_{D}=\min \left\{b^{T} u \mid \quad A^{T} u=\mathbf{c}, \quad u \geq 0\right\} \quad$ (D)

General form

$c \mid c$	(D)		
min	$c^{T} x$	\max	$u^{T} b$
w.r.t.	$A_{i *} x \geq b_{i}, \quad i \in M_{1}$	w.r.t $\quad u_{i} \geq 0, \quad i \in M_{1}$	
	$A_{i *} x \leq b_{i}, \quad i \in M_{2}$	$u_{i} \leq 0, \quad i \in M_{2}$	
	$A_{i *} x=b_{i}, \quad i \in M_{3}$	u_{i} free, $\quad i \in M_{3}$	
	$x_{j} \geq 0, \quad j \in N_{1}$	$\left(A_{* j}\right)^{T} u \leq c_{j}, \quad j \in N_{1}$	
	$x_{j} \leq 0, \quad j \in N_{2}$	$\left(A_{* j}\right)^{T} u \geq c_{j}, \quad j \in N_{2}$	
	x_{j} free, $\quad j \in N_{3}$	$\left(A_{* j}\right)^{T} u=c_{j}, \quad j \in N_{3}$	

Duality theorems

Theorem

- If x^{*} is primal feasible and u^{*} is dual feasible, then

$$
c^{T} x^{*} \leq z_{P} \leq w_{D} \leq b^{T} u^{*}
$$

- Only four possibilities:

1. z_{P} and w_{D} are both finite and equal.
2. $z_{P}=+\infty$ and (D) is infeasible.
3. $w_{D}=-\infty$ and (P) is infeasible.
4. (P) and (D) are both infeasible.

Complexity of linear programming

Theorem (Khachyian 79)
The following problems are solvable in polynomial time:

- Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^{m}$, decide whether $A x \leq b$ has a solution $x \in \mathbb{Q}^{n}$, and if so, find one.
- (Linear programming problem) Given a matrix $A \in \mathbb{Q}^{m \times n}$ and vectors $b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}$, decide whether $\max \left\{c^{T} x \mid A x \leq b, x \in \mathbb{Q}^{n}\right\}$ is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is unbounded, find a feasible solution x_{0}, and find a vector $d \in \mathbb{Q}^{n}$ with $A d \leq 0$ and $c^{T} d>0$.

Complexity of integer linear programming

Satisfiability	over \mathbb{Q}	over \mathbb{Z}	over \mathbb{N}
Linear equations	polynomial	polynomial	NP-complete
Linear inequalities	polynomial	NP-complete	NP-complete

