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Linear programming
Optimization Problems

• General optimization problem

max{z(x) | fj (x)≤ 0,x ∈ D} or min{z(x) | fj (x)≤ 0,x ∈ D}

where D ⊆ Rn, fj : D→ R, for j = 1, ... ,m, z : D→ R.

• Linear optimization problem

max{cT x | Ax ≤=≥ b,x ∈ Rn}, with c ∈ Rn,A ∈ Rm×n,b ∈ Rm

• Integer optimization problem: x ∈ Zn

• 0-1 optimization problem: x ∈ {0,1}n

Feasible and optimal solutions

• Consider the optimization problem

max{z(x) | fj (x)≤ 0,x ∈ D, j = 1, ... ,m}

• A feasible solution is a vector x∗ ∈ D ⊆ Rn such that fj (x∗)≤ 0, for all j = 1, ... ,m.

• The set of all feasible solutions is called the feasible region.

• An optimal solution is a feasible solution such that

z(x∗) = max{z(x) | fj (x)≤ 0,x ∈ D, j = 1, ... ,m}.

• Feasible or optimal solutions

– need not exist,

– need not be unique.

Transformations

• min{z(x) | x ∈ S} = max{−z(x) | x ∈ S}.

• f (x)≥ a if and only if −f (x)≤−a.

• f (x) = a if and only if f (x)≤ a∧−f (x)≤−a.

Lemma

Any linear programming problem can be brought to the form

max{cT x | Ax ≤ b} or max{cT x | Ax = b,x ≥ 0}.

Proof: a) aT x ≤ β  aT x + x ′ = β,x ′ ≥ 0 (slack variable)
b) x free x = x+− x−, x+,x− ≥ 0.

Practical problem solving
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1. Model building

2. Model solving

3. Model analysis

Example: Production problem

A firm produces n different goods using m different raw materials.

• bi : available amount of the i-th raw material

• aij : number of units of the i-th material needed to produce one unit of the j-th good

• cj : revenue for one unit of the j-th good.

Decide how much of each good to produce in order to maximize the total revenue decision variables xj .

Linear programming formulation

max c1x1 + · · · + cnxn

w.r.t. a11x1 + · · · + a1nxn ≤ b1,

...
...

am1x1 + · · · + amnxn ≤ bm,

x1, ... ,xn ≥ 0.

In matrix notation:
max{cT x | Ax ≤ b,x ≥ 0},

where A ∈ Rm×n,b ∈ Rm,c ∈ Rn,x ∈ Rn.

Geometric illustration

max x1 + x2

w.r.t. x1 + 2x2 ≤ 3
2x1 + x2 ≤ 3

x1 , x2 ≥ 0

Polyhedra

• Hyperplane H = {x ∈ Rn | aT x = β}, a ∈ Rn \{0},β ∈ R

• Closed halfspace H = {x ∈ Rn | aT x ≤ β}
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• Polyhedron P = {x ∈ Rn | Ax ≤ b},A ∈ Rm×n,b ∈ Rm

• Polytope P = {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u}, l ,u ∈ Rn

• Polyhedral cone P = {x ∈ Rn | Ax ≤ 0}

The feasible set
P = {x ∈ Rn | Ax ≤ b}

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

• P ⊆ H,H ∩P 6= /0 (Supporting hyperplane)

• F = P ∩H (Face)

• dim(F ) = 0 (Vertex)

• dim(F ) = 1 (Edge)

• dim(F ) = dim(P)−1 (Facet)

• P pointed: P has at least one vertex.

Illustration

Rays and extreme rays

• r ∈ Rn is a ray of the polyhedron P
if for each x ∈ P the set {x + λr | λ≥ 0}
is contained in P.

• A ray r of P is extreme
if there do not exist two linearly
independent rays r1, r2 of P
such that r = 1

2 (r1 + r2).
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Hull operations

• x ∈ Rn is a linear combination of x1, ... ,xk ∈ Rn if

x = λ1x1 + · · ·+ λk xk , for some λ1, ... ,λk ∈ R.

• If, in addition 
λ1, ... ,λk ≥ 0,

λ1 + · · ·+ λk = 1,
λ1, ... ,λk ≥ 0, λ1 + · · ·+ λk = 1,

 x is a


conic
affine

convex

combination.

• For S ⊆ Rn,S 6= /0, the set lin(S) (resp. cone(S),aff(S), conv(S)) of all linear (resp. conic, affine, convex)
combinations of finitely many vectors of S is called the linear (resp. conic, affine, convex) hull of S.

Outer and inner descriptions

• A subset P ⊆ Rn is a H-polytope, i.e., a bounded set of the form Outer

P = {x ∈ Rn | Ax ≤ b}, for some A ∈ Rm×n,b ∈ Rm.

if and only if it is a V-polytope, i.e., Inner

P = conv(V ), for some finite V ⊂ Rn

• A subset C ⊆ Rn is a H-cone, i.e., Outer

C = {x ∈ Rn | Ax ≤ 0}, for some A ∈ Rm×n.

if and only if it is a V-cone, i.e., Inner

C = cone(Y ), for some finite Y ⊂ Rn

Minkowski sum

• X ,Y ⊆ Rn

• X + Y = {x + y | x ∈ X ,y ∈ Y} (Minkowski sum)

+ =

Main theorem for polyhedra

A subset P ⊆ Rn is a H-polyhedron, i.e., Outer

P = {x ∈ Rn | Ax ≤ b}, for some A ∈ Rm×n,b ∈ Rm.

if and only if it is a V-polyhedron, i.e., Inner

P = conv(V ) + cone(Y ), for some finite V ,Y ⊂ Rn
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Theorem of Minkowski

• For each polyhedron P ⊆ Rn there exist finitely many points p1, ... ,pk in P and finitely many rays r1, ... , r l

of P such that
P = conv(p1, ... ,pk ) + cone(r1, ... , r l ).

• If the polyhedron P is pointed, then p1, ... ,pk may be chosen as the uniquely determined vertices of P,
and r1, ... , r l as representatives of the up to scalar multiplication uniquely determined extreme rays of P.

• Special cases

– A polytope is the convex hull of its vertices.

– A pointed polyhedral cone is the conic hull of its extreme rays.

Application: Metabolic networks
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Stoichiometric matrix

• Metabolites (internal) rows

• Biochemical reactions columns

kA + lC
j−→mE + nH

A
B
C
D
E
F
G
H
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S =



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 −1 0
0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1 −1 0 0


.

Flux cone

• Flux balance: Sv = 0

• Irreversibiliy of some reactions: vi ≥ 0, i ∈ Irr .

• Steady-state flux cone
C = {v ∈ Rn | Sv = 0,vi ≥ 0, for i ∈ Irr}

• Metabolic network analysis find p1, ... ,pk ∈ C with C = cone{p1, ... ,pk}.

Simplex Algorithm: Geometric view

Linear optimization problem
max{cT x | Ax ≤ b,x ∈ Rn} (LP)

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of P.

2. Proceed from vertex to vertex along edges of P such that the objective function z = cT x increases.

3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and
along which z is unbounded.

Basic solutions

• Ax ≤ b, A ∈ Rm×n, rank (A) = n.

• M = {1, ... ,m} row indices, N = {1, ... ,n} column indices

• For I ⊆M,J ⊆ N let AIJ denote the submatrix of A defined by the rows in I and the columns in J.

• I ⊆M, |I| = n is called a basis of A iff AI∗ = AIN is non-singular.

• In this case, A−1
I∗ bI , where bI is the subvector of b defined by the indices in I, is called a basic solution.

• If x = A−1
I∗ bI satisfies Ax ≤ b, then x called a basic feasible solution and I is called a feasible basis.



Linear Programming, by Alexander Bockmayr, 9. Dezember 2013, 16:38 2007

Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron P = {x ∈ Rn | Ax ≤ b}, where rank(A) = n, a vector v ∈ Rn is a vertex of P if
and only if it is a basic feasible solution of Ax ≤ b, for some basis I of A.

For any c ∈Rn, either the maximum value of z = cT x for x ∈ P is attained at a vertex of P or z is unbounded on
P.

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

• Suppose rank(A) = n (otherwise apply Gaussian elimination).

• Suppose I is a feasible basis with corresponding vertex v = A−1
I∗ bI .

• Compute uT def= cT A−1
I∗ (vector of n components indexed by I).

• If u ≥ 0, then v is an optimal solution, because for each feasible solution x

cT x = uT AI∗x ≤ uT bI = uT AI∗v = cT v .

• If u 6≥ 0, choose i ∈ I such that ui < 0 and define the direction d def= −A−1
I∗ ei , where ei is the i-th unit basis

vector in RI .

• Next increase the objective function value by going from v in direction d , while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If Ad 6≤ 0, the largest λ≥ 0 for which v + λd is still feasible is

λ
∗ = min{bl −Al∗v

Al∗d
| l ∈ {1, ... ,m},Al∗d > 0}. (PIV)

Let this minimum be attained at index k . Then k 6∈ I because AI∗d =−ei ≤ 0.

Define I′ = (I \{i})∪{k}, which corresponds to the vertex v + λ∗d .

Replace I by I′ and repeat the iteration.

2. If Ad ≤ 0, then v + λd is feasible, for all λ≥ 0. Moreover,

cT d =−cT A−1
I∗ ei =−uT ei =−ui > 0.

Thus the objective function can be increased along d to infinity and the problem is unbounded.

Termination and complexity

• The method terminates if the indices i and k are chosen in the right way (such choices are called pivoting
rules).
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• Following the rule of Bland, one can choose the smallest i such that ui < 0 and the smallest k attaining
the minimum in (PIV).

• For most known pivoting rules, sequences of examples have been constructed such that the number of
iterations is exponential in m + n (e.g. Klee-Minty cubes).

• Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to
work very well in practice.

Simplex : Phase I

• In order to find an initial feasible basis, consider the auxiliary linear program

max{y | Ax−by ≤ 0, −y ≤ 0, y ≤ 1}, (Aux)

where y is a new variable.

• Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing I = K ∪ {m + 1}. The
corresponding basic feasible solution is 0.

• Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the
optimum value has to be 1.

• If I′ is the final feasible basis of (Aux), then K ′ = I′ \ {m + 2} can be used as an initial feasible basis for
(LP).

Duality

• Primal problem: zP = max{cTx | Ax ≤ b, x ∈ Rn} (P)

• Dual problem: wD = min{bT u | AT u = c, u ≥ 0} (D)

General form
(P) (D)

min cT x max uT b
w.r.t. Ai∗x ≥ bi , i ∈M1 w.r.t ui ≥ 0, i ∈M1

Ai∗x ≤ bi , i ∈M2 ui ≤ 0, i ∈M2

Ai∗x = bi , i ∈M3 ui free, i ∈M3

xj ≥ 0, j ∈ N1 (A∗j )T u ≤ cj , j ∈ N1

xj ≤ 0, j ∈ N2 (A∗j )T u ≥ cj , j ∈ N2

xj free, j ∈ N3 (A∗j )T u = cj , j ∈ N3

Duality theorems

Theorem

• If x∗ is primal feasible and u∗ is dual feasible, then

cT x∗ ≤ zP ≤ wD ≤ bT u∗.

• Only four possibilities:

1. zP and wD are both finite and equal.

2. zP = +∞ and (D) is infeasible.
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3. wD =−∞ and (P) is infeasible.

4. (P) and (D) are both infeasible.

Complexity of linear programming

Theorem (Khachyian 79)
The following problems are solvable in polynomial time:

• Given a matrix A ∈Qm×n and a vector b ∈Qm, decide whether Ax ≤ b has a solution x ∈Qn, and if so,
find one.

• (Linear programming problem) Given a matrix A ∈ Qm×n and vectors b ∈ Qm,c ∈ Qn, decide whether
max{cT x | Ax ≤ b,x ∈Qn} is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is
unbounded, find a feasible solution x0, and find a vector d ∈Qn with Ad ≤ 0 and cT d > 0.

Complexity of integer linear programming

Satisfiability over Q over Z over N
Linear equations polynomial polynomial NP-complete

Linear inequalities polynomial NP-complete NP-complete


