
15 Genome comparison

(Multiple) genome comparison (or genome alignment) quite obviously deals with the comparison of several
genomic sized sequences.

The aim is to better reconstruct genomic architecture (i.e. detect shared motifs) as well as phylogeny if
the input consists of related genomes. The term can also be used when one compares for example different
assemblies of the same genome or individual genomes of the same species. Depending on the input, adequate
methods can be different.

15.1 Genome comparison

In general we can distinguish two main approaches:

1. collinear alignment: Here we are in the same model as in standard sequence alignment, except that the
size of the input can be hundreds of millions of base pairs.

2. non-collinear alignment: Here we assume, that the genomes under inverstigation have undergone some
evolutionary changes like duplications, rearrangement, or transposition of genomic sequence in addition
to nucleotide changes.

We will address in this unit both approaches starting with the collinear alignment.

15.2 Genome comparison

A first step in collinear (and non-collinear) genome comparison is to use fast methods to compute local
correspondences or segment matches. Using such correspondences, one can devise hierachical schemes to save
on computation time as depicted below.

To do this, one has to address the problem of overlapping segment matches.

(Multiple) Genome comparison: Segment Match Refinement, by Knut Reinert, June 25, 2012, 15:04 15001

15.3 Segment match refinement and applications

This exposition is based on:

1. Aaron Halpern, Daniel Huson, Knut Reinert: Segment Match Refinement and Applications, WABI 2002.

We will present the algorithms used for refining a set of segment matches in such a way that the resulting
set of refined matches does not contain any two matches that overlap, but the union of all matches in the refined
set is the same as in the original set.

15.4 Motivation

Comparison of large, unfinished genomic sequences requires fast methods that are robust to misordering,
misorientation, and duplications. A number of fast methods exist that can compute local similarities between
such sequences, from which an optimal one-to-one correspondence might be desired. However, existing
methods for computing such a correspondence are either too costly to run or are inappropriate for unfinished
sequence.

We discuss an efficient method for refining a set of segment matches such that the resulting segments are
of maximal size without non-identity overlaps. This resolved set of segments can be used in various ways to
compute a similarity measure between any two large sequences, and hence can be used in alignment, matching,
or tree construction algorithms for two or more sequences.

Assume the following two local overlaps are given. It can be easily seen that a greedy algorithm which
takes the largest match first and does not allow overlaps can be suboptimal by a factor of almost 2 (ore more if
more matches are involved) in the sense that we could also choose a large subsegment of the second match.

A

B

S S′

We assume the existence of a pre-computed set of local segment matches between two sequences. Such sets
can be obtained efficiently by various techniques, e.g. BLAST, using suffix arrays, or hashing based schemes.
However, a set of local segment matches is not disjoint: more than one match may cover a given interval,
whereas the two analyses described above require either a one-to-one matching or a many-to-one matching.

In the following, we introduce an efficient and provably optimal approach to the problem of constructing
one-to-one or many-to-one match sets by minimally “refining” (subdividing) matches until all overlaps between
the refined matches are “resolved”: the projections of any two refined matches onto each sequence are either
disjoint or are identical.

Given such a resolved set of matches, several analyses that are otherwise difficult at best become quite
straightforward, including not only the one-to-one matching problem and the many-to-one matching problems
introduced above but also sequence alignment based on conserved segments.

For instance the one-to-one correspondence on the refined set is reduced to the classical matching problem.
In addition, it is straightforward to compute an alignment between the sequences if desired (How?).

15002 (Multiple) Genome comparison: Segment Match Refinement, by Knut Reinert, June 25, 2012, 15:04

15.5 Definitions

Let A = a1a2 . . . ap and B = b1b2 . . . bq be two sequences. We call Ai j = ai+1ai+2 . . . a j an A-segment, with 0 ≤ i < j ≤ p.
A B-segment is defined similarly. In the following, we will assume without specific mention that any definitions
relative to A carry over to analogous definitions relative to B.

A segment match S = (Ai j,Bkl) consists of an A-segment Ai j and a B-segment Bkl. We call i, j, k and l the
left-A, right-A, left-B and right-B positions of S, respectively. Given a set of segment matches S, let suppA(S)
denote the A-support of S, i. e. the set of left-A and right-A positions of all matches S ∈ S.

Assume that every segment match S = (Ai j,Bkl) comes with two projection maps αS : [i, j] → [k, l] and
βS : [k, l]→ [i, j] that reflect e.g. the alignment associated with S, as depicted in the below Figure.

A

B

S

P0

P1

Q0

Q1I1

i j

k l

In the case of a direct (i. e. orientation preserving) match, we require that αS and βS are non-crossing, i. e.
that the two maps are monotonically increasing and that we have αS(h) ≤ h′ ⇔ h ≤ βS(h′) for all h ∈ [i, j] and
h′ ∈ [k, l].

In the case of a reversal, we require that the projections are (completely) crossing, i. e. that they are mono-
tonically decreasing and that we have αS(h) ≤ h′ ⇔ h ≥ β(h′) for all h ∈ [i, j] and h′ ∈ [k, l].

A match S′ = (Ai′ j′ ,Bk′l′) is called a submatch of S, if i ≤ i′ ≤ j′ ≤ j, k ≤ k′ ≤ l′ ≤ l, and we have αS′(i
′) = k′ or

βS′ (k
′) = i′, and αS′(j′) = l′ or βS′ (l

′) = k′. Here, we assume that α′
S
, and β′

S
, equals the restriction of αS to [i′, j′],

and βS to [k′, l′], respectively.

All the previous definitions just formalize trivialities. Now we define the key concept, a resolved refinement.
Consider a match S = (Ai j,Bkl) ∈ S. A set of matches S′ is called a refinement of S, if each S′ ∈ S′ is a submatch
of S and S′ tiles S, i. e.:

(i, j] =

·⋃

(Ai′ j′ ,Bk′ l′)∈S′

(i′, j′] and (k, l] =

·⋃

(Ai′ j′ ,Bk′ l′)∈S′

(k′, l′].

Definition 1. A set S′ of matches is called a refinement of S, if there exists a partitioning S′ = S′
1
∪̇S′

2
∪̇ . . . ∪̇Sn

such that S′
i

is a refinement of Si for every Si ∈ S.

We are particularly interested in refinements of S that have the property that the segments of any two
matches are either disjoint or are identical and capture this property as follows:

Definition 2. A set of matches S is called resolved, if for any S = (Ai j,Bkl) ∈ S we have [i, j] ∩ suppA(S) = {i, j}
and [k, l] ∩ suppB(S) = {k, l}. For technical reasons, we also require {αS(i), αS(j)} ⊆ suppB(S) and {βS(k), βS(l)} ⊆
suppA(S).

15.6 Example

(Multiple) Genome comparison: Segment Match Refinement, by Knut Reinert, June 25, 2012, 15:04 15003

A

B

S

P0

P1

Q0

Q1I1

i j

k l

A

B

S S′

i ji′ j′

k l

(a) (b)

A

B

S′

S1 S2 S3

i ji′ j′

k lαS(i′) αS(j′)

A

B

i j

k l

h

h′ h′′

(c) (d)

The preceding example shows (a) A valid match S = (Ai j,Bkl), together with arrows depicting αS (pointing
down) and βS (pointing up). (b) The set S = {S,S′} is unresolved. (c) The set {S1,S2,S3,S

′} is a minimal resolved
refinement of S. (d) This set is a non-minimal resolved refinement of S.

Any set of matchesS possesses a (trivial) resolved refinement obtained by simply refining every S ∈ S into
a set of single position matches. We are interested in resolved refinements of minimal cardinality and claim:

Lemma 3. There exists a unique resolved refinement S̄ of S of minimal cardinality.

Proof: (Exercise). Sketch: Consider two different resolved refinements S1 and S2 of S,both of minimal
cardinality. Divide proof into two cases. 1) (suppA(S1) , suppA(S2) 2) suppA(S1) = suppA(S2), suppB(S1) =
suppB(S2)

We now show how to efficiently compute the minimal resolved refinement.

15.7 The algorithm

The input consists of set of segment matches S and projections αS, βS for all S ∈ S. The output is a resolved
refinement S̄ of S of minimal cardinality.

We maintain a bipartite graph G = (VA∪̇VB,E ⊆ S × VA × VB) with nodes sets VA ⊆ {a0, . . . , ap} and
VB ⊆ {b0, . . . , bq} representing A- and B-positions, respectively, and a set E of (labeled) edges that keep track of
pairs of positions projected onto each other by a given sequence match.

(1) Refine(S, {αS, βS});
(2) VA = VB = E = ∅;
(3) WA = suppA(S); WB = suppB(S);
(4) while (WA , ∅ ∧ WB , ∅) do
(5) A re f ine(WA);
(6) B re f ine(WB);
(7) od
(8) lexicographically order edges in E using
(9) (S, i, k) or (S, i,−k) depending on whether αS and βS

(10) are non-crossing or crossing;
(11) S̄ := {(Ai j,Bkl) | (S, i, j) and (S′, k, l)
(12) are consecutive and S = S′};

15004 (Multiple) Genome comparison: Segment Match Refinement, by Knut Reinert, June 25, 2012, 15:04

(1) A Refine(WA);
(2) if this is not the first execution of A refine;
(3) then WB = ∅;
(4) fi
(5) for each h ∈WA \ VA do
(6) for each match S = (Ai j,Bkl) ∈ Swith i ≤ h ≤ j do
(7) h′ = αS(h);
(8) if ∄ edge (S, h, h′)
(9) then if ∄h′ ∈WB

(10) then create node h′;
(11) fi
(12) G.new edge(S, h, h′); insert h′ into WB;
(13) fi
(14) od
(15) od
(16) VA = VA ∪WA;

(1) B Refine(WB);
(2) WA = ∅;
(3) for each h ∈WB \ VB do
(4) for each match S = (Ai j,Bkl) ∈ Swith i ≤ h ≤ j do
(5) h′ = βS(h);
(6) if ∄ edge (S, h, h′)
(7) then if ∄h′ ∈WA

(8) then create node h′;
(9) fi

(10) G.new edge(S, h, h′); insert h′ into WA;
(11) fi
(12) od
(13) od
(14) VB = VB ∪WB;

(Multiple) Genome comparison: Segment Match Refinement, by Knut Reinert, June 25, 2012, 15:04 15005

15.8 Example

a0 a1 a2
u0 a3 a4 a5

b0 b1 b2 v1 v2 b3 b4 b5

S1

S2

S3

We go through the algorithm using the above example.

• Initially WA = {a0, . . . , a5}, WB = {b0, . . . , b5} and VA = ∅, VB = ∅. We first A Re f ine. a3, a4 lie in the match
S2. Hence we create nodes v1, v2 and edges (S2, a3, v1) and (S2, a4, v2). WB = {b0, . . . , b5, v1, v2}. VA = WA,
since VA was empty.

15.9 Example

• Now we call B Re f ine for the first time. b1, b2, v1, v2 lie in the match S2. Hence we create a node u0 (a3

exists already) and edges (S2, b1,u1) and (S2, b2, a3). WA = {u0}. VB =WB since VB was empty.

• Now we A Re f ine. u0, a3, a4 lie in the match S2. But only u0 is new. No new edge needs to be created
since we assume the projections in the example to point to each other. Hence WB = ∅ and we can stop the
refinement.

• Finally we have to sort the edges lexicographically and determine the new segment matches.

15.10 Running time

Lemma 4. Given a set of n segment matches S between two sequences A = a1a2 . . . ap and B = b1b2 . . . bq, with p ≥ q.
The graph G in algorithm Refine has at most O(kp) edges and can be computed in at most O(p log n + kp log p) steps,
where k is the maximal number of segment matches containing any given position.

Proof: The maximum number of different A-positions is p. To insert an A-position h into VA, we first determine
which segment matches contain it in O(log n + k) steps, using an interval tree.

For each of the at most k matches S ∈ S that contain h, determine whether αS(h) is contained in VB in
O(log p) steps. Putting this together, we obtain a bound of O(p(log n + k + k log p)) = O(p log n + kp log p). Note
that each of O(p) positions gives rise to at most k edges in G.

Lemma 5. Given a set of n segment matches S between two sequences A = a1a2 . . . ap and B = b1b2 . . . bq, with p ≥ q.

The minimal resolved refinement S̄ of S can be computed in at most O(p log n + kp log kp) steps, where k is the maximal
number of segment matches containing any given position.

Proof: The preceeding result implies that the ordering step in algorithm Refine will take at most O(kp log kp)
computations.

Note that the size of a minimal resolved refinement depends on the length of the input sequences. For
example, a set of only four segment matches between segments of length d, say, can give resize to 4d matches,
as demonstrated in the below Figure.

15006 (Multiple) Genome comparison: Segment Match Refinement, by Knut Reinert, June 25, 2012, 15:04

A

B

S

S1 S2

S′

A

B

S

S1 S2

S′

A

B

S

S1 S2

S′

(a) (b) (c)

15.11 Experiments

The method was tested with two (partial) versions of the drosophila genome. The first was obtained from
the BDGP (http://www.fruitfly.org/sequence/dlMfasta.shtml), corresponding to 50,107,720 bp of two finished

chromosome arms (2L and 3R). The second was a unpublished assembly of whole genome shotgun sequencing
data conducted at Celera in late 2001.

A suffix-tree based method (Mummer) yielded 292,769 alignments seeded with a perfect match of at least
50 bp. These matches covered 49,953,627bp of the finished sequence (i.e., they covered all but 154,093 bp).

43,740,070bp were covered by a single match, but the remainder was covered two or more times; since the
total length of all matches was 125,863,932, a relatively small fraction of the sequence is clearly involved in a
large number of matches.

The refinement method described in this paper transformed the match set into 17,167,891 distinct matches.
This took a total of 880 seconds on a Compaq Unix workstation.

The initial match set, with mean length 429 bp, was cut up into much smaller pieces (mean length 7bp) by
the refinement. However, since most of the original sequence was covered by a single match, there should still
be matches of considerable size; indeed, the maximum length refined match was 466,877bp, and of the finished
sequence covered by matches, half is covered by a refined match of length at least 97,008 bp.

An optimal matching was determined on the refined match set, as described above. The resulting set
of matches involved 262,885 refined matches and covered 49,875,599bp, leaving 232,121bp of the finished
sequence uncovered.

The greedy method selected 1042 matches totaling 49,754,205 bp, leaving 353,515 bp of the finished
sequence uncovered. The mean length is 47,749bp and the N50 is 136,332.

Hence it is questionable whether the refinment is suitable for this analysis. It has probably more merits
when there are more overlapping matches and the refined matches are used to compute an alignment.

15.12 Summary

• In many applications it is important to have a 1-to-1 correspondence of subsequences, given a set of
sequences.

• Normally, one has a given set of overlapping local alignments.

• One can transform this given set in a set of minimal cardinality such that no two segments intersect
properly (they are disjoiunt or identical).

	Genome comparison
	Genome comparison
	Segment match refinement and applications
	Motivation
	Definitions
	Example
	The algorithm
	Example
	Example
	Running time
	Experiments
	Summary

