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Case study: Time tabling

Rossi-Doria et al. 2002 http://dx.doi.org/10.1007/978-3-540-45157-0_22

• Set of events E , set of rooms R, set of students S, set of features F

• Each student attends a number of events and each room has a size.

• Assign all events a timeslot and a room so that the following hard constraints are satisfied:

– no student attends more than one event at the same time.

– the room is big enough for all attending students and satisfies all features required by the event.

– only one event is in each room at any timeslot.

Case study: Time tabling (2)

• Penalties for soft constraint violations

– a student has a class in the last slot of a day.

– a student has more than two classes in a row.

– a student has a single class on a day.

• Objective: Minimize number of soft constraint violations in a feasible solution

Common neighborhood structure

• Solution ordered list of length |E |
The i-th element indicates the timeslot to which event i is assigned.

• Room assignments generated by matching algorithm.

• Neighborhood: N = N1∪N2

– N1 moves a single event to a different timeslot

– N2 swaps the timeslots of two events.

Common local search procedure

Stochastic first improvement local search

• Go through the list of all the events in a random order.

• Try all the possible moves in the neighbourhood for every event involved in constraint violations, until
improvement is found.

• Solve hard constraint violations first.
If feasibility is reached, look at soft constraint violations as well.

Metaheuristics

1. Evolutionary algorithm

2. Ant colony optimization

3. Iterated local search
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4. Simulated annealing

5. Tabu search

1. Evolutionary algorithm

• Steady-state evolution process: at each generation only one couple of parent individuals is selected for
reproduction.

• Tournament selection: choose randomly a number of individuals from the current population and select
the best ones in terms of fitness function as parents.

• Fitness function: Weighted sum of hard and soft constraint violations,

f (s) := #hcv (s) ·C + #scv (s)

1. Evolutionary algorithm (2)

• Uniform crossover: for each event a timeslot’s assignment is inherited from the first or second parent with
equal probability.

• Mutation: Random move in an extended neighbourhood (3-cycle permutation).

• Search parameters: Population size n = 10, tournament size = 5, crossover rate α = 0.8, mutation rate
β = 0.5

• Find a balance between the number of steps in local search and the number of generations.

2. Ant colony optimization

• At each iteration, each of m ants constructs, event by event, a complete assignment of the events to the
timeslots.

• To make an assignment, an ant takes the next event from a pre-ordered list, and probabilistically chooses
a timeslot, guided by two types of information:

1. heuristic information: evaluation of the constraint violations caused by making the assignment, given
the assignments already made,

2. pheromone information: estimate of the utility of making the assignment, as judged by previous
iterations of the algorithm.

• Matrix of pheromone values τ : E×T → R≥0.
Initialization to a parameter τ0, update by local and global rules.

2. Ant colony optimization (2)

• An event-timeslot pair which has been part of good solutions will have a high pheromone value, and
consequently have a higher chance of being chosen again.

• At the end of the iterative construction, an event-timeslot assignment is converted into a candidate solution
(timetable) using the matching algorithm.

• This candidate solution is further improved by the local search routine.

• After all m ants have generated their candidate solution, a global update on the pheromone values is
performed using the best solution found since the beginning.
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3. Iterated local search

• Provide new starting solutions obtained from perturbations of a current solution

• Often leads to far better results than using random restart.

• Four subprocedures

1. GenerateInitialSolution: generates an initial solution s0

2. Perturbation: modifies the current solution s leading to some intermediate solution s′,

3. LocalSearch: obtains an improved solution s′′,

4. AcceptanceCriterion: decides to which solution the next perturbation is applied.

Perturbation

• Three types of moves

P1: choose a different timeslot for a randomly chosen event;

P2: swap the timeslots of two randomly chosen events;

P3: choose randomly between the two previous types of moves and a 3-exchange move of timeslots of
three randomly chosen events.

• Strategy

– Apply each of these different moves k times, where k is chosen of the set {1; 5; 10; 25; 50; 100}.
– Take random choices according to a uniform distribution.

Acceptance criteria

• Random walk: Always accept solution returned by local search

• Accept if better

• Simulated annealing

SA1: P1(s,s′) = e−
f (s)−f (s′)

T

SA2: P2(s,s′) = e−
f (s)−f (s′)
T ·f (sbest )

Best parameter setting (for medium instances):

P1, k = 5, SA1 with T = 0.1

4. Simulated annealing

Two phases

1. Search for feasible solutions, i.e., satisfy all hard constraints.

2. Minimize soft constraint violations.

Strategies

• Initial temperature: Sample the neighbourhood of a randomly generated solution, compute average value
of the variation in the evaluation function, and multiply this value by a given factor.
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• Cooling schedule

1. Geometric cooling: Tn+1 = α×Tn, 0 < α < 1

2. Temperature reheating: Increase temperature if rejection ratio (= number of moves rejected/number
of moves tested) exceeds a given limit.

• Temperature length (number of iterations at each temperature): Proportional to the size of the neighbor-
hood

5. Tabu search

• Moves done by moving one event or by swapping two events.

• Explore solutions that do not decrease the objective function value

• Tabu list: Forbid a move if at least one of the events involved has been moved less than l steps before.

• Size of tabu list l : number of events divided by a suitable constant k (here k = 100).

• Variable neighbourhood set: every move is a neighbour with probability 0.1  decrease probability of
generating cycles and reduce the size of neighbourhood for faster exploration.

• Aspiration criterion: perform a tabu move if it improves the best known solution.

Evaluation

http://iridia.ulb.ac.be/~msampels/ttmn.data/

• 5 small, 5 medium, 2 large instances

Type small medium large
|E | 100 400 400
|S| 80 200 400
|R| 5 10 10

• 500 resp. 50 resp. 20 independent trials per metaheuristic per instance.

• Diagrams show results of all trials on a single instance.

• Boxes show the range between 25% and 75% quantile.
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Evaluation (2)

• Small: All algorithms reach feasibility in every run,
ILS best, TS worst overall performance

• Medium: SA best, but does not achieve feasibility in some runs. ACO worst.

• Large01: Most metaheuristics do not even achieve feasibility. TS feasibility in about 8% of the trials.

• Large02: ILS best, feasibility in about 97% of the trials, against 10% for ACO and GA. SA never reaches
feasibility. TS gives always feasible solutions, but with worse results than ILS and AC0 in terms of soft
constraints.


