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Graph-Based View on
Sequence-Structure
Alignment



Graph-Theoretical Reformulation
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Pairwise sequence alignment problem:
Find alignment of maximum weight (award matches, penalize
mismatches and gaps)
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GAU--CC

Pairwise sequence alignment problem:
Find alignment of maximum weight (award matches, penalize
mismatches and gaps)



Graph-Theoretical Reformulation

interaction matches M := {{I,m} € (5) | and m do not cross}

Pairwise sequence-structure alignment problem:
Find structural alignment of maximum weight (alignment costs +
awards for realized interaction matches)



Graph-Theoretical Reformulation

Given: Match graph Gy = (V1 UV, E; UE,; UL), matches M,
and weights wt“M
Find: Lines L’ C L and matches M’ C M such that

Q@ w+ 5  wpyismaximal
lel’ {l,m}em’

@ Linesin L' are conflict-free.
@ Every line is incident to at most one interaction match
@ Matches in M are realized, i.e., V{I,m} e M ;I me L’
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Graph-Theoretical Reformulation

Given: Match graph Gy = (V1 UV, E; UE,; UL), matches M,
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Integer Linear Programming
Formulation
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Integer Linear Programming Formulation

Variables x € {0,1}-,y € {0,1}M

1 lel 1 match {I,m} € M’
X = . Y{im} = .
0 otherwise 0 otherwise =

max ZW| X+ Z Wim * Y{I,m}
= {I,mJem

x€{o,1}", ye{o,1}"
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Integer Linear Programming Formulation

Variables x € {0,1}-,y € {0,1}M

1 lel 1 match {I,m} € M’
X = . Y{im} = .
0 otherwise 0 otherwise

max ZW| "X+ Z Wim * Y{1,m}

= {ILm}em

S. t. x<1 V sets of mutually crossing lines C
IEC
z Y{I,m} <X VleL
meL
> Yimp < Xm VmelL
=
x € {01}, ye{o,1}"




Solving the ILP with
Lagrangian Relaxation



Unifying Graph-Based View Revisited

Split matches into directed matches

M = {(I,m),(m,1) | {I,m} €M} .
A directed match (I, m) is realized iff | € L.

Select L’ C L and M’ C M with
Q@ Sw+ Y Wim

IEL/ (I,myem’
maximal

@ Linesin L’ are conflict-free
© Matches in M’ are realized
Q@ (Ibm)eM & (m)eM
© Wi m) +Wim) = Wi m}

Idea is due to [Caprara & Lancia, 04], who did this for CMO



1 match (I,m) e M’

0 otherwise

=

Variables x € {0,1}-,y € {0,1}"

(Im) =

0 otherwise J

I {
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Integer Linear Programming Formulation

Variables x € {0,1}%)y € {Oal}m

) {1 lel . {1 match (I,m) € M’
|:

0 otherwise Y(m) = 0 otherwise

max S wi-xi+ Y WimY(m)

leL (I,m)eM

s.t. z x <1 V sets of mutually crossing lines C
I€c
Z Y(im) <X Viel
meL

x €{0,1}%, ¥ e{o, 1™
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Integer Linear Programming Formulation

Variables x € {0,1}%)y € {Oal}m

) {1 lel . {1 match (I,m) € M’
|:

0 otherwise Y(m) = 0 otherwise
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Integer Linear Programming Formulation

Variables x € {0,1}%)y € {Oal}m

) {1 lel . {1 match (I,m) € M’
|:

0 otherwise Y(m) = 0 otherwise

max ZW| - X| + z (le +V_\7Im)9(|,m)

leL (I,m)eM

S.t. x <1 V sets of mutually crossing lines C
I=e
Z Y(i,m) <X Viel

meL

YL =) Y(I,m) € M,l <m

x €{0,1}%, ¥ e{o, 1™
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Local view:

We can easily compute the profit of a line I:
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Solving the Relaxation

Local view: Switch back to global view:

max Pr - X
s.t. Z x <1 VC
leC

x € {0,1}*

We can easily compute the profit of a line I:

-

P =wi + max (Aim + Win)

(I,m)emM

This is classical
sequence alignment!



We use subgradient optimization for this task:
» Startwith A} =0 foralll,m € L.
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We use subgradient optimization for this task:
» Startwith A} =0 foralll,m € L.

Im ifsIim =Ym—Ym =0

=Y ifslo=1

|

» Stepsize Y; as in [Held/Karp, 71]

)\I-l-l

Zy — 7L
Yi=H——
Sim
I,meL



Computing the Multipliers

We use subgradient optimization for this task:
» Startwith A) =0 forallI,m € L.
| im if Sy 1= Yim — Y = O
> Nt = A =¥ ifsip =1
|y ifsl =1
» Stepsize Y; as in [Held/Karp, 71]
Zy —ZL
Yi=W——>
Sim
I,meL

Need good upper and lower bounds zy and z, .
» 7z, = lowest relaxation sol. value seen so far

> 7 =7



Computing the Lower Bound z,

In each iteration, we would like to compute a new good
structural alignment.

Given: Alignment from the solution of the last iteration
Find: Best completion with interaction matches

AW
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Computing the Lower Bound z,

In each iteration, we would like to compute a new good
structural alignment.

Given: Alignment from the solution of the last iteration
Find: Best completion with interaction matches

© ® @ O 6 O ®

@OD

This is the maximum weight matching problem in general
graphs!



T-Lara: Overall Approach

» Input: kK RNA sequences

» We compute (%) pairwise structural alignments by
Lagrangian relaxation:

» and build a library for T-Coffee [Notredame et al., 00]
» The library is a collection of local information contained in
the (%) pairwise alignments
» T-Coffee is a popular progressive alignment tool that
respects the local information.

» Output: Multiple alignment computed by T-Coffee



Computational Results



Computational Results

LiSA: Library of Structural Alignment algorithms

LisaLEDA LisaCPLEX LisaVienna

) threading
lasse

folding

: paul
LisaBase

peggi

C**, open source, http://www.planet-1lisa.net


http://www.planet-lisa.net

Computational Results: LaRA

M93388.1_1185-1

AF217350.1_193-
L07095.1_15292-
AF233324.1_3722
D00558.1 130

X52392.1_9016-9
AB042524.1 9391

CAGTUUAGUAGUIU - AR-UGAAGRRIGCUAGCUUUGGGGEIUGEAG-GUCTCUGG- - -UU-UGEAG-TIGEITEG
GLUUGAGUAGCAAAGC-GGUUARUGCUUGAGAUUUAGGUUCUCACA-UCARAGGUUCRAG-CCCUUUCUCUAGUU
GUCUUGAUAGUAUA- ARCAUUACUCUGGUCUUGUAARCCUGAR-AUGARGAUC-UUC-UCUUC -UCARGACA
CEGEGAEUAGCGEAGCUUGGUARE GOARCTUGGUUUGGGACCAGUIGGGUCGGAGGUUCGARUCCUCT -CICGEEEA
GUCUGAUUAGCGEANCU -GGCAGABCAACUGACUCUUARUCAGUGGGUUGUGGGUUCGAUUCCCAC - AUCASECA
CANIAREANGCUAUGCA-CC--FAGEACUAGCCUUUUARGCUAGAGAGAGGGGACACCC --UCCCC -CUTARUGA
ACUCCCUUAGUATA- - --AUUARUAUAACUGACUUCCARUUAGUAGA-UUCUGAAUA-AACCCAG-AAGAGAGUA

Benchmark study: LaRA competitive with/outperforms
alternative approaches.



Computational Results: LaRA

v

LaRA: Lagrangian RNA Alignments

v

Benchmark set of manually curated structural alignments
» BraliBase 2.1 [Wilm, 06]
» contains alignments of 2, 3, 5, 7, 10, and 15 sequences
» classified according to average pairwise sequence identity
(APSI)
Comparison to state-of-the-art tools: MARNA, STRAL,
FoldalignM, Muscle

v

v

Quality assessment by comparing sum-of-pairs score
(COMPALIGN) (comparison to reference alignment)



COMPALIGN
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Computational Results: LaRA
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» LaRA is no exact method: Structures dissimilar — large
gap.

HAVE A NICE CHRISTMAS BREAK AND A HAPPY NEW
YEAR!
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