
Discrete Math for Bioinformatics WS 10/11: , by A. Bockmayr/K. Reinert, 13. Dezember 2010, 09:19 2001

Combinatorial Optimization and Integer
Linear Programming

Combinatorial Optimization: Introduction

Many problems arising in practical applications have a special, discrete and finite, nature:

Definition. (Linear Combinatorial Optimization Problem)
Given

• a finite set E (the ground set),
• a subset F ⊆ 2E (the set of feasible solutions),
• a cost function c : E → R,

find a set F ∗ ∈ F such that
c(F ∗) := ∑

e∈F ∗
c(e)

is maximal or minimal.

Examples: Shortest Path, Traveling Salesman, and many many more. . .
Just in bioinformatics: Alignments, Threading, Clone-Probe Mapping, Probe Selection, De Novo Peptide Sequencing, Side-
Chain Placement, Maximum-weight Connected Subgraph in PPI Networks, Genome Rearrangements, Cluster Editing,
Finding Regulatory Modules, Finding Approximate Gene Clusters, Haplotyping, and many more. . .

Example. Optimal Microarray Probe Selection

Experimental setup (group testing):

• Goal: determine presence of targets in sample
• probes hybridize with targets→ hybridization pattern

generate
candidate
probes

select probes
for design

run
experiment

decode
hybridization
pattern

Selection phase:

• unique probes are easy to decode but difficult to find (similarities, errors, add. constraints, . . .)
• → consider non-unique probes
• Task: choose few probes that still allow to infer which targets are in the sample

Example hybridization matrix (H)ij :

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1
t2
t3
t4

1

0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

0

0 0

0

0

0

0

0

0 0

0

0

0

Assume: no errors, only one target present in sample

Example hybridization matrix (H)ij :

2002 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1
t2
t3
t4

1

0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

0

0 0

0

0

0

0

0

0 0

0

0

0

Assume: no errors, only one target present in sample

Example hybridization matrix (H)ij :

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1
t2
t3
t4

1

0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

0

0 0

0

0

0

0

0

0 0

0

0

0

Assume: no errors, two targets present, e.g., t2 and t3

Example hybridization matrix (H)ij :

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1
t2
t3
t4

1

0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

1

0

0 0

0

0

0

0

0

0 0

0

0

0

Assume: no errors, two targets present, e.g., t2 and t3

Details and solution approach can be found in

• G. W. Klau, S. Rahmann, A. Schliep, M. Vingron, K. Reinert: Integer Linear Programming Approaches for Non-
Unique Probe Selection. Discrete Applied Mathematics, volume 155, Issues 6-7, pp. 840-856, 2007.

We want to solve the following problem.

Definition. Probe Selection Problem (PSP)

• Given an incidence matrix H, d ∈ N, and c ∈ N,
• find the smallest subset D ⊆ N, such that

– all targets are covered by at least d probes
– all different subsets of targets S and T up to cardinality c are d-separable with respect to D

Observation. PSP is a combinatorial optimization problem, because

• ground set = candidate probes, i.e., E := {1,2, ... ,n}.
• feasible solutions = feasible designs, i.e.,

F := {D ∈ 2E | D satisfies coverage and separation constraints}

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2003

• all costs c(e) := 1.

More examples. What about
min{3x2 + 2 | x ∈ R} ?

Or

max 2x1 + 3x2

s.t. x1 + 2x2 ≤ 3

3x1− x2 ≤ 5

x1,x2 ∈ N ?

Interesting combinatorial problems have an exponential number of feasible solutions. [Otherwise, a straightforward
polynomial-time algorithm finds optimal solutions.]

Combinatorial optimization: find solutions faster than by complete enumeration.

Now, given a combinatorial optimization problem C = (E ,F ,c), we define, for each feasible solution F ∈ F , its
characteristic vector χF ∈ {0,1}E as

χ
F
e :=

{
1 e ∈ F

0 otherwise .

Then, assuming the objective is to maximize, C can be seen as maximizing over a polytope, i. e.,

max{cT x | x ∈ conv
{

χ
F ∈ {0,1}E | F ∈ F

}
.

Why polytope?

Theorem. (Minkowski 1896, Weyl 1935)
Each polytope P = {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u} can be written as

P = conv(V)

where V is a finite subset of Rn and vice versa.

It is possible to switch between these descriptions as H -polytope (halfspaces) and V -polytope (vertices) with
the Fourier-Motzkin elimination method.

Example.

Consider the V -polytope defined by

P = conv

{(
0
1

)
,

(
1
0

)
,

(
1
1

)}
End (Example).

So, we can just compute the H -polytope {x ∈ Rn | Ax ≤ b} for C and optimize over it using, e. g., the Simplex
method?

Unfortunately, it is not so easy:

• In general, we cannot find A and b in polynomial time.
• The size of A and b might be exponential.
• The coefficients in A and b can be exponentially large.

A little bit of light. . . often, finding an integer linear programming (ILP) formulation is easier:

max{c′T x ′ | A′x ′ ≤ b,x ′ ∈ Z} .

But: solving LPs is easy, solving ILPs is not!

I will now demonstrate an very useful software package, PORTA, on a simple example that we will encounter
later again.

I will demonstrate:

2004 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

• How to formulate the ILP (and find out that our description in halfspaces is not tight (using soplex)).
• How to compute the convex hull of all feasible solutions (using traf)
• How to enumerate all integer points lying in a H -polytope (using vint)

Alignments using Combinatorial Optimization

Sources for the following lectures:

• Althaus, E., Caprara, A., Lenhof, H.-P., Reinert, K.: Multiple Sequence alignment with arbitrary gap costs:Computing
an optimal solution using polyhedral combinatorics. Proceedings of the 1st European Conference on Computational
Biology (ECCB 2002), pages 4-16, 2002

• Althaus, E., Caprara, A., Lenhof, H.-P., Reinert, K.: A Branch-and-Cut Algorithm for Multiple Sequence alignment:
Mathematical Programming 2005

• J. D. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, M. Vingron: A Polyhedral Approach to Sequence
Alignment Problems. Discrete Applied Mathematics, volume 104, pages 143-186, 2000.

Motivation

Multiple alignment and structural multiple alignment are hard combinatorial problems. If one wants to solve them
exactly, the usual way is to use dynamic programming combined with clever bounding techniques.

Nevertheless, dynamic programming has clear limitations. If one considers for example the generalization of the
pairwise dynamic programming algorithm for multiple alignment, we have to consider O(2k) choices in each step
of the algorithm, and we have to store intermediate results. This is clearly only feasible for k ≈ 10 sequences.

Similar statements hold for structural alignments.

Why bother? Why do we want to compute exact solutions to these problems? Are heuristics not sufficient,
especially considering that all scoring schemes only approximate the biological truth?

The answer is twofold:

1. In order to know how well a scoring scheme models the biological truth, we need exact results to compare
them to experimentally derived findings. For example we can use the database BaliBase, which is based
on the alignment of structural protein units to evaluate the performance of a given scoring scheme.

2. If we know that a scoring scheme approximates the problem at hand very well, then it might be worthwile
to compute exact solutions if the problem size allows.

In the following lectures we introduce a set of different techniques to solve these problems to optimality. These
techniques are based on the formulation of the problems as ILPs (Integer Linear Programs). This has two
advantages:

1. The problems are modified quite easily by adding new variables or contraints.

2. Solving (integer) linear problems is a field where a lot of research has been done, and there are very
efficient techniques known to solve ILPs.

In the following lectures we will discuss:

• How to model (structural) multiple alignment problems as graph problems, which in turn are easy to trans-
late into ILPs.

• Approaches to solve the ILPs (e.g., the branch-and-cut approach).

• The most important points one has to address in solving a problem with branch-and-cut:

– identifying classes of facet-defining inequalities

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2005

– how to solve the associated separation problems

Linear programming

We first give a short overview of linear programming and how to solve (integer) linear programs using software
packages.

A linear program (LP) consists of a set of linear inequalities,

a11x1 + a12x2 + ...a1nxn ≤ b1

a21x1 + a22x2 + ...a2nxn ≤ b2

...
am1x1 + am2x2 + ...amnxn ≤ bm,

together with an objective function
c1x1 + c2x2 + · · ·+ cnxn

to be optimized, i.e., minimized or maximized.

Linear programs can be efficiently solved using the simplex method, developed by George Dantzig in 1947, or
using interior point methods introduced by Khachiyan in 1979. The simplex algorithm has an exponential worst
case complexity but runs quite quickly in practice.

Interior point methods were first only a proof that linear programming can be solved in polynomial time. The
original algorithms were not practical. Meanwhile most LP solvers have both methods as practical routines.

There exist powerful computer programs for solving LPs, even when huge numbers of variables and inequalities
are involved.

CPLEX is the most well known and powerful commercial LP solver. SoPlex is part of the ZIB Optimization Suite
(http://zibopt.zib.de), which is free for academic purposes.

For the rest of the lecture we will consider a LP solver as a black box which can solve linear programs very
efficiently and numerically relatively stable.

We give a small example of a LP. The inequalities of an LP describe a convex polyhedron, which is called a
polytope, if it is bounded.

For example, the inequalities

−1x1−1x2 ≤ 5
−2x1 + 1x2 ≤ −1
1x1 + 3x2 ≤ 18

1x1 + 0x2 ≤ 6
1x1−2x2 ≤ 2

describe the hyperplanes and polytope depicted in this cartoon:

For example, the objective function 2x1−3x2 takes on a maximum of 6, for x1 = 6 and x2 = 2, and a minimum of
−9, for x1 = 3 and x2 = 5.

If we are after integral solutions, we were lucky with our example. The solution of the linear program is integer.
However, if we change some contraints, we are not so lucky. Assume we enter the following LP into our solver
(shown in CPLEX LP format):

maximize 2x1-3x2
subject to
-1x1 - 1x2 <= 5

2006 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

-2x1 + 1.5x2 <= -1
1x1 + 3x2 <= 18

0.8x1 + 0x2 <= 6
1x1 - 2x2 <= 2

end

Then the optimal solution is fractional, namely x1 = 7.5 and x2 = 2.75. However, we often want to constrain the
variables to be integer, that means we want to solve an ILP.

Integer linear program

An integer linear program (ILP) is a linear program with the additional constraint that the variables xi are only
allowed to take on integer values.

Solving ILPs has been shown to be NP-hard. (See the book by Garey and Johnson 1979, for this and many other
NP-completeness results.)

There exist a number of different strategies for approximating or solving such an ILP. These strategies usually
first attempt to solve relaxations of the original problem, which are obtained by dropping some of the inequalities.

A very common relaxation is the LP-relaxation of the ILP, which is the LP obtained by dropping the integer
condition.

In the above example we can ask CPLEX to solve an ILP by specifying

general
x1
x2

Now the optimal solution is x1 = 6 and x2 = 2.

Among the integer linear programs we have a special class, namely the combinatorial optimization problems. In
those we restrict the variables to be binary. If we take an “object” into the solution then the associated variable
is 1 otherwise it is 0.

Let’s illustrate this on an example. Assume we are given a drawing of a bipartite graph and we want to find the
largest subgraph such that no edge crosses or touches another edge in the drawing.

max x1 + x2 + x3

x1 + x2 ≤ 1

x1 + x3 ≤ 1

x2 + x3 ≤ 1x1

x2

x3

Obviously we can only choose one of the three edges. However, solving the LP on the right gives us a solution
of x1 = x2 = x3 = 1

2 , which satisfies the contraints and maximizes the objective function. If we require the solution
to be integer, only one of the three variables is set to 1.

In CPLEX we can do this by specifying

binary
x1
x2
x3

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2007

We now discuss how to model multiple sequence alignment problems as combinatorial optimization problems by
first formulating them as a graph problem and then do the obvious 1-to-1 mapping between edges and variables.

The alignment graph

Given two sequences a1 = A G C T and a2 = A G T .

The complete alignment graph is the following bipartite graph G = (V ,E), with node set V and edge set E :

A G C T

TGA
Each edge e = (u,v) has a weight ω(e) = s(u,v), the score for placing v under u.

An alignment graph is any subgraph of the complete alignment graph.

The trace of an alignment

Given an alignment such as
A G C T
A G - T

, we say that an edge in the alignment graph is realized, if the

corresponding positions are aligned:

A G C T

TGA
The set of realized edges is called the trace of the alignment. An arbitrary subset T ⊆ E of edges is called a
trace, if there exists some alignment that it realizes.

Similarly, we define the (complete) alignment graph and trace for multiple alignments. For r sequences, the
resulting graph will be r -partite.

Maximum-weight trace problem

Problem. Given sequences A and a corresponding alignment graph G = (V ,E) with edge weights ω. The
maximum-weight trace problem is to find a trace T ⊆ E of maximum weight.

Note, that for two sequences, this can be solved in polynomial time by dynamic programming.

Characterization of traces

We have seen that an alignment can be described by a trace in the complete alignment graph G = (V ,E).

Question: Is every subset T ⊆ E the trace of some alignment?

Clearly, the answer is no:

A G C T

TGA
Goal: Characterize all legal traces.

2008 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

Here are two examples:

trace alignment

(a)

A G C T

TA C

TGA −→

A G C T

A

GA T

T

−

− C

ok

(b)

A G C T

TA C

TGA −→

A

A

A G

C

−

−

T

T

G C

−

T − −

?

not ok.

Partial orders

A binary relation ≤ is a (non-strict) partial order, if it is

1. reflexive, i.e., a≤ a,

2. antisymmetric, i.e., a≤ b and b ≤ a implies a = b, and

3. transitive, i.e., a≤ b and b ≤ c implies a≤ c.

A binary relation < is a strict partial order, if it is

1. irrefexive, i.e., a 6< a, and

2. transitive, i.e., a < b and b < c implies a < c.

Given a binary relation ≺, the transitive closure of ≺ is a binary relation ≺∗ such that x ≺∗ x ′ if there exists a
sequence of elements x = x1,x2, ... ,xk = x ′ with x1 ≺ x2 ≺ ...xk .

The extended alignment graph

We define a binary relation ≺ on the characters of the sequences A = {ai
j} by writing ai

j ≺ ai
j ′ , if j ′ = j + 1, and

indicate the pairs (ai
j ,a

i
j+1) by a set H of directed edges in the alignment graph. This results in the extended

alignment graph G = (V ,E ,H).

A G C T

TC

TGA

A

Let≺∗ denote the transitive closure of≺, i.e., we write ai
j ≺∗ ai

j ′ , if j ′ > j . Observe that≺∗ is a strict partial order.

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2009

Consider two sets of nodes X ⊆ V and Y ⊆ V . We define

X /Y ,

if and only if
∃ x ∈ X ∃ y ∈ Y : x ≺ y .

We define /∗ to be the transitive closure of /, that is, we write X /∗Y , if for one of the sequences ap ∈ A we have
that X contains a node representing a position ap

j in ap and Y contains a node representing another position ap
k

in ap, with j < k .

In other words, we write
X /∗ Y ,

if and only if
∃ x ∈ X ∃ y ∈ Y : x ≺∗ y .

Consider the two examples again and define sets X1,X2, ... via the two given traces:

A G

G

1X
X2

X3
X4A G C T

TA C

TGA

A G

G

1X
X2 X4

X3
A G C T

TA C

TGA

(a) (b)

In (a), X1 /
∗ X2 /

∗ X3 /
∗ X4, and /∗ is a strict partial order.

In (b), we have X1 /
∗ X2,X3,X4; X2 /

∗ X3,X4; and X3 /
∗ X2,X4. Since, e.g., X2 /

∗ X2 does not hold, there is no
transitivity, and thus the binary relation no partial order.

Characterization of traces

Theorem. (John Kececioglu)
Given a set of sequences A. Let G = (V ,E ,H) be an extended alignment graph for A. A subset T ⊆ E of edges
is a trace, if and only if /∗ is a strict partial order on the connected components of G′ = (V ,T).

(Recall that a connected component of a graph is a maximal set of nodes U ⊆ V such that any two nodes
v ,u ∈ U are connected by a path of edges in the graph.)

Proof. Blackboard.

Mixed cycles

For a given choice of alignment edges we can efficiently check whether the connected components allow such
a partial order by searching for a mixed cycle Z , which is a cycle in the extended alignment graph G = (V ,E ,H):

A U G

U C

C

U

C U G A

G

Z

A mixed cycle contains at least one arc a ∈ H and hence at least two alignment edges e, f ∈ E .

2010 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

A mixed cycle Z is called critical, if all nodes in Z ∩ap occur consecutively in Z , for all sequences ap ∈ A. That
is, the cycle enters and leaves each sequence at most once.

We have the following result:

Lemma. A subset T ⊆ E is a trace, if and only if G′ = (V ,T ,H) does not contain a critical mixed cycle.

Proof. Exercise.

Given edge weights for the alignment edges, we can reformulate the Maximum Weight Trace problem as follows:

Problem. Given an extended alignment graph G = (V ,E ,H), find a subset T ⊆ E with maximal weight such that
G = (V ,T ,H) does not contain a mixed cycle.

Integer LP for the MWT problem

How to encode the Maximum Weight Trace Problem problem as an integer LP?

Assume we are given an extended alignment graph G = (V ,E ,H), with E = {e1,e2, ... ,en}.
Each edge ei ∈ E is represented by a variable xi , that will take on value 1, if ei belongs to the best scoring trace,
and 0, if not.

Hence, our variables are x1,x2, ... ,xn.

To ensure that the variables are binary, we add constraints xi ≤ 1 and xi ≥ 0 and require the xi to be integer.

Additional inequalities must be added to prevent mixed cycles.

For example, consider:

A U G

U C

C

UG
e2

e4
e1

e3

There are three possible critical mixed cycles in the graph, one using e1 and e3, one using e2 and e3, and one
using e2 and e4. We add the constraints

x1 + x3 ≤ 1,

x2 + x3 ≤ 1,

x2 + x4 ≤ 1.

to ensure that none of the critical mixed cycles is realized.

For example, consider:

e1 e2

e3

A U G

U

C

U

C U C U

C U

with three edges e1, e2, and e3 that all participate in a critical mixed cycle. The constraint

x1 + x2 + x3 ≤ 2

prevents them from being realized simutaneously.

In summary, given an extended alignment graph G = (V ,E ,H) with E = {e1,e2, ... ,en}, and a score ωi defined
for every edge edge ei ∈ E .

We can obtain a solution to the MWT problem by solving the following ILP:

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2011

max ∑
ei∈E

ωixi

subject to ∑
ei∈C∩E

xi ≤ |C∩E |−1 for all critical mixed cycles C

xi ∈ {0,1} for all i = 1, ... ,n

Now we discuss an extension of this ILP formulation. [Remember: one advantage of ILPs is that problem vari-
ants/modifications can often be expressed quite easily.]

Block partition

Given a set of sequences A = {a1,a2, ... ,ar}. The complete alignment graph is usually too big to be useful.

Often, we are given a set of block matches between pairs of the sequences ap and aq , where a match relates
a substring of ap and a substring of aq via a run of non-crossing edges (called a block), as shown here for two
blocks D and D′:

U G C

U CG

U G A

U G C

U G A

U CG

A

U

C
D

D’

In the following, we will assume that the edges of the alignment graph G = (V ,E) were obtained from a set
of matches, and we are given a partition of E into blocks. [Note that overlapping matches lead to a multigraph.
Fortunately, this does not cause problems in our formulation.]

Given a partition D of the edges of G = (V ,E) obtained from a set of matches. Then we require that for any given
block D ∈D , either all edges in D are realized, or none. Each block D is assigned a positive weight ω(D).

Problem. Given an extended alignment graph G = (V ,E ,H) and a partition D of E into blocks with weights ω(D)
for all D ∈ D . The generalized maximum trace problem (GMT) is to determine a set M ⊆ D of maximum total
weight such that the edges in

⋃
D∈M

D do not induce a mixed cycle on G.

Instead of having a variable for every edge in an extended alignment graph, we now have a variable for every
set of the partition D .

Otherwise the ILP remains the same.

ILP for the GMT

We define a surjective function v : E → D , which maps each edge e ∈ E to the block d ∈ D in which e is
contained and define

v (X) =
⋃
e∈X

v (e) for X ⊆ E .

It is now easy to formulate GMT as an integer linear program. For every d ∈ D we have a binary variable
xd ∈ {0,1} indicating whether d is in the solution or not. Then the GMT-problem can be written as:

max ∑
d∈D

ωd · xd

s.t. ∑
d∈v (C∩E)

xd ≤ |v (C∩E)|−1 ∀ critical mixed cycles C in G

xd ∈ {0,1} ∀d ∈D

2012 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

Solving the ILP using branch-and-cut

Solving ILPs is a main topic in combinatorial optimization. We will take a brief look at the branch-and-cut ap-
proach.

Branch-and-cut makes use of two techniques:

• Cutting planes: to solve an ILP, one considers relaxations of the problem (usually the LP-relaxation) and
repeatedly “cuts” away parts of the polytope (by adding new constraints) in the hope of obtaining an integer
solution. To find cutting planes one has to solve the separation problem, that means find a violated, valid
inequality of the ILP.

• Branch-and-bound: an enumeration tree of all possible variable settings is partially traversed, computing
local upper bounds and global lower bounds, which are used to avoid parts of the tree that cannot produce
the optimal value.

c(a) (b) c

c(c) c(d)

x̄ x̄

x̄

f

f

x̄

Adding cutting planes. The last cutting plane is facet-defining and leads to the optimal integer solution.

The convex hull of all feasible incidence vectors (the green points in the previous figure) forms the problem
polytope P (the inner, white polytope in the previous figure). If one considers the inequalities of the ILP, they
generally describe a larger polytope (the yellow polytope), although this polytope does not contain an infeasible
integer point (the red points).

If the solution x̄ of the LP-relaxation is integral, it corresponds to a feasible incidence vector that represents an
optimal solution. Otherwise we search for a valid inequality fx ≤ f0 that “cuts off” the solution x̄ , i. e.,

fy ≤ f0 for all y ∈ P and

f x̄ > f0 .

The set {x | fx = f0} is called a cutting plane.

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2013

The search for a cutting plane is called the separation problem. Any cutting plane found is added to the linear
program and the linear program is solved again.

There is a special class of cutting planes we are interested in, namely the facets of the problem polytope. As
we know, facets of a d-dimensional polytope are faces of dimension d − 1. They are in a sense the “best”
cutting planes since they directly bound the problem polyhedron. Hence, it is important to identify the classes of
facet-defining inequalities.

We generally compute cutting planes for two reasons:

1. A class of contraints in our ILP formulation is too large (i.e., exponentially large) to write down (we relax
the LP-relaxation further).

2. The inequalities in the original ILP formulation are not sufficient to yield an integer solution. Hence we
search for valid inequalities that cut off those fractional solutions.

For example consider the number of mixed cycles in the MWT problem. It grows exponentially with the size
of the graph. Instead of writing them all down, we relax the problem first by omitting them, and then compute
cutting planes by checking whether they are violated. [Indeed we do something slightly different, since the mixed
cycle inequalities do not always describe facets of the MWT-polytope.]

How often do we have to repeat that? Are we guaranteed to find a solution? The following theorem by Grötschel,
Lovász, and Schrijver gives a partial answer:

Theorem. For any proper class of polyhedra, the optimization problem is polynomially solvable if and only if the
separation problem is polynomially solvable.

This basically says, that for NP-complete problems there is little hope to guarantee a quick termination of the
cutting plane algorithm.

Either we just do not know enough classes of facet-defining inequalities, or we cannot solve the separation
problem for one of these classes in polynomial time.

Hence we repeat the cutting step either until an integer solution is found that fulfills all constraints (which would
be optimal for the original problem), or until we get stuck, that means we cannot find a violated inequality for any
of our classes of valid inequalities.

In this case we branch. That is, we choose a variable xi and solve two sub-cases, namely the case xi = 0 and
the case xi = 1. Repeated application produces a enumeration tree of possible cases.

We call an upper bound for the original ILP local, if it is obtained from considering a subproblem in the enume-
ration tree.

If the solution found for a subproblem is feasible for the original problem and has a higher score than any
solution found so far, then it is recorded and its value becomes the new global lower bound for the original
objective function. Remember that the feasibility of a new solution has to be carefully checked, since we fixed a
number of variables on our way to the subproblem.

Subsequently, we only pursue subproblems whose local upper bound is greater or equal to the global lower
bound.

This is an example of the branch-and-bound paradigm for solving hard combinatorial problems.

Branch-and-bound is a divide-and-conquer approach to solving a problem by dividing it into smaller problems.
The local solution of a subproblem gives rise to a lower bound for the best possible score for the original problem,
if the solution of the subproblem also solves the original problem.

The highest such local score attained so far gives rise to a global lower bound for the original problem and is
used to skip parts of the enumeration tree in which the current global lower bound can’t be beaten.

General strategy:

2014 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

smaller
problem

smaller
problem

smaller
problem

smaller
problem

smaller
problem

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

Repeatedly
cut & solve

xi=0 xi=1
branch

smaller
problem

branchbranch

bound

feasible solution
from smaller
problem gives
local upper
bound

xj=1xj=0xk=1xk=0

problem
Original maintain global lower bound

relax

The details are a bit more involved and are skipped here. We now take the initial MWT problem as an example
to point out the important steps in branch-and-cut algorithms.

Solving the MWT

Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

max ∑
ei∈E

ωixi

subject to ∑
ei∈C∩E

xi ≤ |C∩E |−1 for all critical mixed cycles C

xi ∈ {0,1} for all i = 1, ... ,n

We showed before that this ILP describes the solution to the Maximum Weight Trace problem. The first step is
to have a closer look at the MWT-polytope.

Let T := {T ⊆ E | T is a trace} be the set of all feasible solutions. We define the MWT polytope as the convex
hull of all incidence vectors of E that are feasible, i. e.,

PT (G) := conv{χT ∈ {0,1}|E | | T ∈ T } ,

where the incidence vector χT for a subset T ⊆ E is defined by setting χT
e = 1 if e ∈ E and setting χT

e = 0 if e /∈ E .

We have a closer look at the facial structure of the polytope, that means we try to identify facet-defining classes
of inequalities. The following theorem is our main tool.

Identifying facet-defining classes of polytope

Theorem. (“facet theorem”) (Nemhauser, Trotter, 1973)
Let P ⊆ Qd be a full-dimensional polyhedron. If F is a (nonempty) face of P then the following assertions are
equivalent.

1. F is a facet of P.
2. dim(F) = dim(P)−1, where dim(P) is the maximum number of affinely independent points in P minus one.
3. There exists a valid inequality cT x ≤ c0 with respect to P with the following three properties:

(a) F = {x ∈ P | cT x = c0}
(b) There exists a vector x̂ ∈ P such that cT x̂ < c0.

(c) If aT x ≤ a0 is a valid inequality for P such that F ⊆ F̄ = {x ∈ P | aT x = a0} then there exists a number
λ ∈Q such that aT = λ · cT and a0 = λ · c0.

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2015

Assertions ?? and ?? provide the two basic methods to prove that a given inequality cT x ≤ c0 is facet-defining
for a polyhedron P.

The first method (Assertion ??), called the direct method, consists of exhibiting a set of d = dim(P) vectors
x1, ... ,xd satisfying cT xi = c0 and showing that these vectors are affinely independent.

The indirect method (Assertion ??) is the following: We assume that

{x | cT x = c0} ⊆ {x | aT x = a0}

for some valid inequality aT x ≤ a0 and prove that there exists a λ > 0 such that aT = λ · cT and a0 = λ · c0.

Clique inequalities

Now we describe a class of valid, facet-defining inequalities for the MWT problem, focusing first on the pairwise
case. In the case of two sequences, consider the following extended alignment graph:

x1

x2

x3

This gives rise to the following set of inequalities:

x1 + x2 ≤ 1, x1 + x3 ≤ 1, x2 + x3 ≤ 1

However, it is clear that only one of the three edges can be realized by an alignment. Hence, inequality x1 + x2 +
x3 ≤ 1 is valid and more stringent. Indeed it cuts off the fractional solution x1 = x2 = x3 = 1

2 .

If C ⊆ E is a set of alignment edges such that each pair forms a mixed cycle, it is called a clique (since it forms
a clique in the conflict graph).

The conflict graph of a combinatorial optimization problem has a node for each object and an edge between
pairs of conflicting objects). In general the clique inequalities

∑
e∈C

xe ≤ 1

are valid for the MWT problem.

Are they also facet-defining for the MWT polytope?

Theorem.
Let C ⊆ E be a maximal clique. Then the inequality ∑

e∈C

xe ≤ 1 is facet-defining for PT (G).

Proof.
We choose the direct way, which means we have to find n affinely independent vectors satisfying ∑

e∈C

xe = 1. This

can be easily achieved. Assume without loss of generality that |E \C| 6= ∅. We first construct |C| many solutions
by choosing a single edge in C.

Then for each edge e /∈ C there must be an edge f ∈ C which does not form a mixed cycle with e (otherwise C
is not maximal). Hence we can construct a set of solutions {e, f}, ∀e /∈ C. This means we have for all n edges
a solution satisfying the clique inequality with equality, and they are clearly affinely independent. �

But how do we efficiently find violated clique inequalities? How do we solve the separation problem? We define
the following relation on edges:

Definition.
Let Kp,q be the complete bipartite graph with nodes x1, ... ,xp and y1, ... ,yq . Define the strict partial order ‘≺’ on
the edges of Kp,q as follows:

e = (xi ,yj)≺ f = (xk ,yl) iff

2016 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

(i > k and j ≤ l) or (i = k and j < l).

Observe that for two sequences the alignment graph (V ,E) is a subgraph of Kp,q and that two edges e and f
form a mixed cycle in the input graph iff either e ≺ f or f ≺ e.

Definition.
Let PG(Kp,q) be the p× q directed grid graph with arcs going from right to left and from bottom to top. Row r ,
1≤ r ≤ p of PG(Kp,q) contains q nodes which correspond from left to right to the q edges that go between node
xp−r+1 and node y1, ... ,yq in Kp,q . We call PG(Kp,q) the pairgraph of Kp,q and we call a node of the pairgraph
essential if it corresponds to an edge in E .

1

1 2

4

5 6
3

2 3

4 5 6

The graph PG(Kp,q) has exactly one source and one sink and there is a path from node n2 to node n1 in PG(Kp,q)
iff e1 ≺ e2 for the corresponding edges e1,e2 in Kp,q .

Lemma.
Let P = n1, ... ,np+q be a source-to-sink path in PG(Kp,q) and let e1, ... ,el , l ≤ p + q, be the edges in E that
correspond to essential nodes in P. Then e1, ... ,el is a clique of the input extended alignment graph if l ≥ 2.
Moreover, every maximal clique in the input extended alignment graph can be obtained in this way.

Proof.
For any two nodes ni and nj in PG(Kp,q) with i > j the corresponding edges ei and ej are in relation ei ≺ ej and
hence form a mixed cycle in G. Thus {e1, ... ,el} is a clique of G. Conversely, the set of edges in any clique C of
G is linearly ordered by≺ and hence all maximal cliques are induced by source-to-sink paths in PG(Kp,q). �

We can now very easily use the pairgraphs for each pair of sequences to separate the clique inequalities.

Assume the solution x̄ of the current LP-relaxation is fractional. Our problem is to find a clique C which violates
the clique inequality

∑
e∈C∩E

x̄e ≤ 1 .

Assign the cost x̄e to each essential node ve in PG(Kp,q) (essential nodes are the nodes that correspond to the
edges in E) and 0 to non-essential nodes.

Then compute the longest source-to-sink path C in PG(Kp,q). If the cost of C is greater than 1, i.e.,

∑
e∈C∩E

x̄e > 1

we have found a violated clique inequality.

Since PG(Kp,q) is acyclic, such a path can be found in polynomial time.

[Caution: We will not go deeper into this, but it is necessary to make a sparse version of the PG in the case of a non-
complete bipartite graph. This has to be done such that its size ist still polynomial and each path encodes a maximal
clique. Nevertheless, the trick with essential and non-essential nodes will work and leads to correct separation results.]

Now we describe how to solve the separation problem for the mixed-cycle inequalities. Assume the solution x̄ of
the linear program is fractional.

First assign the cost 1− x̄e to each edge e ∈ E and 0 to all a ∈ H. Then we compute for each node si ,j ,
1 ≤ i ≤ k , 1 ≤ j < ni the shortest path from si ,j+1 to si ,j . If there is such a shortest path P, and its cost is less

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2017

than 1, i.e.,

∑
e∈P

(1− x̄e) < 1 ,

we have found a violated inequality, namely

∑
e∈P

x̄e > |P ∩E |−1 ,

since P together with the arc (si ,j ,si ,j+1) forms a mixed cycle.

RNA structure alignment

Finally, we give an ILP formulation for combined sequence structure alignment. This shows again how we can
easily extend the basic MWT formulation to a more complicated problem. We will give some classes of facet-
defining inequalities.

In addition we demonstrate how to conduct an indirect proof that one specific class is facet-defining.

Furthermore, we will get to know the concept of Lagrangian relaxation to find solutions for ILP problems.

But first we introduce the term structured sequence.

Structured sequences

Given a set of sequences A = {a1, ... ,ar}. How can we use information about their secondary structures to obtain
biologically better alignments?

Let at be a sequence of length n. An interaction is a pair (i , j) of positions in at for 1≤ i < j ≤ n.1 Two interactions
(i , j) and (k , l) are in conflict, if {i , j}∩{k , l} 6= ∅.

A set P of non-conflicting interactions for at is called a (secondary) structure for at , and we call (at ,P) a structured
sequence. If P contains conflicts we call (at ,P) an annotated sequence.

The figure shows a structured and an annotated sequence.

1We potentially require a minimum hairpin loop length of three bases for RNA, i. e., j− i > 3.

2018 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

Structural alignment

Given a set of annotated sequences

A = {(a1,P1), (a2,P2), ... , (ar ,Pr)}.

A structural multiple sequence alignment of A is a set

Â = {(â1, P̂1), ... , (âr , P̂r)}

of structured sequences such that:

1. {â1, â2, ... , âr} is a multiple sequence alignment for {a1,a2, ... ,ar}, and

2. for all t ∈ {1,2, ... , r} and all (i , j) ∈ P̂t , we have

(i−#gaps(ât
1, ... , ât

i), j−#gaps(ât
1, ... , ât

j)) ∈ Pt .

The second condition ensures that the structural msa only contains interactions that are present in the input.

Scoring a structural alignment

Goal: Define a scoring scheme that reflects the biological relatedness of the sequences under consideration,
taking their secondary structure into account.

In general terms, a scoring function simply assigns a real number to every possible structural alignment.

In practice, scoring functions usually consist of a weighted sum of two parts, one that evaluates the alignment
of the characters in the sequences and one that evaluates the alignment of the interactions in the secondary
structure.

In the pairwise case, for example, one could use a pairwise sequence alignment score sim to score the sequence
alignment and then define an interaction score

isim : Σ4→ R

that assigns a score to two pairs of aligned characters that are defined by two matching interactions (where Σ
denotes the alphabet of characters, excluding ’-’).

The following structural alignment score function rna(Â) can be used to identify pairwise structural alignments of
RNA sequences that have both high sequence similarity and high structure conservation:

rna(Â) =
L

∑
i=1

sim(â1
i , â2

i) + ∑
(j , l) ∈ P̂1, (q, r) ∈ P̂2

(q, r) = (j , l)

isim(â1
j , â1

l , â2
q , â2

r).

Example:

interactions alignment with high alignment with high
sequence score interaction score

Structural alignment graph

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2019

We consider now the case of two sequences, but all definitions hold for r > 2. Given a set of annotated
sequences A = {(a1,P1), ... , (ar ,Pr)}. Let G = (V ,E ,H) denote a extended alignment graph associated with
{a1, ... ,ar}.
A structural (extended) alignment graph G′ = (V ,E ,H, I) is obtained by introducing a set of new edges I that
represent all possible interactions.

Example:

Interaction matches

Let ip and iq denote two interaction edges in a structural alignment graph that are contained in the secondary
structures of two different sequences. Given a trace T we say that ip matches iq , if the two alignment edges el

and er joining the two left respectively two right nodes of ip and iq are realized, i.e., if el ,er ∈ T .

We call any such set {ip, iq ,el ,er} an interaction match.

Structural traces

Let G = (V ,E ,H, I) be a structural alignment graph for a set of structured sequences A = {(a1,P1), ... , (ar ,Pr)}. A
structural trace of G is a pair (T ,B) with T ⊆ E and B ⊆ I such that

• the induced subgraph (V ,T ∪H) does not contain a critical mixed cycle, and

• there are no two conflicting edges in B.

• each edge in B is part of a realized interaction match

Here are two possible structural traces:

Scoring a structural trace

2020 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

Let (T ,B) be a structural trace. As for conventional traces, each edge e ∈ T is given a weight ω(e) which is
simply the score for aligning the two corresponding symbols.

Any interaction match {ip, iq ,el ,er} is completely specified by the two edges el and er and so we can denote it
by mlr and assign a weight ω(l , r) to it. Let M denote the set of all possible interaction matches, i. e.,

M = {mlr |mlr = {ip, iq ,el ,er} is a possible interaction match in G} .

We define the score of a structural trace as:

S((T ,B)) = ∑
e∈T

ω(e) + ∑
ip, iq ∈ B,el ,er ∈ T
{ip, iq ,el ,er} ∈M

ω(l , r).

We can find the maximal scoring trace by solving an ILP.

Maximal scoring structural trace

Given a structural alignment graph G = (V ,E ,H, I), the score ωi for realizing an edge ei ∈ E and the score ωlr

for realizing an interaction match mlr .

The problem of maximizing the score of a structural trace can be formulated as the following ILP:

max ∑
ei∈E

ωixi + ∑
mij∈M

ωijyij

s. t. ∑
ei∈C∩E

xi ≤ |C∩E |−1 for all critical mixed cycles C

∑
j

yij ≤ xi for all i

∑
i

yij ≤ xj for all j

xi ,yij ∈ {0,1} for all variables

Lemma.
Any solution to this ILP corresponds to a structural trace.

Proof.
The set of all variables xi with xi = 1 define a set of edges T ⊆ E and the critical mixed cycle inequalities ensure
that T is a trace.

The set of all variables yij with yij = 1 define a set of matched interactions B ⊆ I. To establish that B does indeed
give rise to a structural trace, note that the remaining constraints in the ILP ensure that

• an interaction match mlr can only be realized if both el and er are realized, and

• only one interaction match can “use” any specific alignment edge ei as its left- or right-connecting edge,
and so no conflicts can arise. �

Facet-defining inequalities

Given a subset of interaction matches M ′ of M let I(M ′) be all interaction edges of the interaction matches in M ′,
that is

I(M ′) = I∩
⋃

ml ,r∈M ′
ml ,r .

Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19 2021

The goal is to find the structural trace (E ′, I(M ′)), E ′ ⊆ E , M ′ ⊆M with maximal weight.

The set of realized alignment edges and interaction matches can be represented by an |E ∪M|-dimensional
incidence vector χA. Let

R := {A = (E ′,M ′),E ′ ⊆ E ,M ′ ⊆M | (E ′, I(M ′)) is a structural trace of G}

be the set of all feasible solutions.

We define the SMT polytope of G as the convex hull of the incidence vectors of all feasible solutions, i. e.,

PR (G) := conv{χA ∈ {0,1}|E∪M| | A ∈ R }.

First we state some basic results about the SMT polytope and then define four non-trivial classes of valid ine-
qualities and show in which case they are facet-defining.

Lemma.
Let G = (V ,E ,H, I) be a SEAG with n alignment edges and m interaction matches. Then

• PR (G) is full-dimensional and

• the inequality xi ≤ 1 is facet-defining iff there is no ej ∈ E in conflict with ei .

Proof. (Exercise). Hint: find a sufficient number of affinely independent vectors to prove both parts.

The following lemma handles other trivial inequalities.

Lemma.
Let G = (V ,E ,H, I) be a SEAG with n alignment edges and m interaction matches.

1. The inequality xi ≥ 0 is facet-defining iff ei is not contained in an interaction match.

2. For each interaction match mi ,j the inequality yij ≥ 0 is facet-defining.

Proof. (Exercise)

Now we come to a more interesting class of inequalities, the interaction inequalities. If Mi is the set of interaction
matches that contain ei then we can write them as

∑
mi ,j∈Mi

yi ,j − xi ≤ 0 .

Theorem.
Let G = (V ,E ,H, I) be a SEAG. Let ei be an alignment edge. Then the interaction inequality

∑
mi ,j∈Mi

yi ,j − xi ≤ 0

is facet-defining for PR (G).

Proof.
Denote the interaction inequality by cT

(x
y

)
≤ c0. Obviously condition 3 (b) of the “facet theorem” holds because

for the incidence vector χi of the set {ei} holds cT χi < c0. Therefore it is sufficient to show that every valid
inequality aT x ≤ a0 with

{x | cT x = c0} ⊆ {x | aT x = a0}

is—up to a multiplicative factor—equal to cT x ≤ c0.

Assume that {x | cT x = c0} ⊆ {x | aT x = a0}. Since c0 = 0 it follows that a0 = 0.

The incidence vectors χ{e} of the |E | − 1 sets {e}, ∀e ∈ E \ {ei} fulfill cT χ{e} = aT χ{e} = 0. Hence, ae = 0,
∀e ∈ E \{ei}.

2022 Combinatorial Optimization, by Knut Reinert, Gunnar W. Klau, 13. Dezember 2010, 09:19

Similarly the |M|−|Mi | incidence vectors χ
Aml ,r of the sets Aml ,r = ml ,r , ∀ml ,r ∈M \Mi fulfill cT χ

Aml ,r = aT χ
Aml ,r = 0.

Hence, aml ,r = 0, ∀ml ,r ∈M \Mi .

Proof (continued):
The sets Ami ,j = mi ,j , ∀mi ,j ∈ Mi form feasible solutions whose incidence vectors χ

Ami ,j satisfy cT χ
Ami ,j = 0 and

therefore aT χ
Ami ,j = 0.

If one subtracts aT χ
Ami ,j = 0 from aT χ

Ami ,j′ = 0, ∀mi ,j ′ ∈ Mi \{mi ,j} this yields ami ,j = · · · = ami ,j′ , because we have
just shown that all other coefficients except aei are zero.

Since ami ,j =−aei we can choose λ =
cmi ,j
ami ,j

which yields λ ·aT = cT .

Applying the “facet theorem” proves that the interaction inequalities are indeed facet-defining for PR (G). �

Summary

• We can formulate an alignment problem as a graph-theoretic problem, the maximum weight trace problem.
• This is a suitable basis for translating the problem into an ILP. The variables are edges and forbidden

combinations of variables can be easily detected (by searching mixed cycles).
• The formulation can be easily extended to handle block alignment or sequence/structure alignments.
• In general, ILP problems are NP-hard. One possible way of solving is the branch-and-cut approach.
• In branch-and-cut it is important to describe the problem polytope as well as possible. That means should

identify facet-defining inequalities and find efficient separation routines for them.
• We saw a central theorem that helps to prove whether an inequality is facet-defining or not.

