Graph Algorithms

2001

I. Shortest paths

- D = (V, A) directed graph, $s, t \in V$.
- A walk is a sequence $P = (v_0, a_1, v_1, \dots, a_k, v_k), k \ge 0$, where a_i is an arc from v_{i-1} to v_i , for $i = 1, \dots, k$.
- *P* is a *path*, if $v_0, ..., v_k$ are all different.
- If $s = v_0$ and $t = v_k$, *P* is a *s*-*t* walk resp. *s*-*t* path of length k (i.e., each arc has length 1).
- The distance from s to t is the minimum length of any s-t path (and $+\infty$ if no s-t path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

Initialization: $V_0 = \{s\}$ Iteration: $V_{i+1} = \{v \in V \setminus (V_0 \cup V_1 \cup \cdots \cup V_i) \mid (u, v) \in A, \text{ for some } u \in V_i\},$ until $V_{i+1} = \emptyset$.

Running time: O(|A|)

- *V_i* is the set of nodes with distance *i* from *s*.
- The algorithm computes shortest paths from *s* to all reachable nodes.
- Can be described by a directed tree T = (V', A') with root *s* such that each *u*-*v* path in *T* is a shortest *s*-*t* path in *D*.

Shortest paths with non-negative lengths

- Length function $I : A \to \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \ge 0\}$
- For a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ define $I(P) = \sum_{i=1}^k I(a_i)$.

Algorithm (Dijkstra 1959)

Upon termination, f(v) gives the length of a shortest path from *s* to *v*.

Running time: $O(|V|^2)$ (can be improved to $O(|A| + |V| \log |V|)$.)

Example

Iteration	и	U	<i>f</i> [1]	f[2]	f[3]	<i>f</i> [4]	f[5]
0	_	$\{1, 2, 4, 3, 5\}$	0	8	8	8	∞
1	1	$\{2, 3, 4, 5\}$	0	1	∞	3	10
2	2	$\{3, 4, 5\}$	0	1	6	3	10
3	4	{3,5}	0	1	5	3	9
4	3	{5 }	0	1	5	3	6
5	5	{}	0	1	5	3	6

Application: Longest common subsequence

- Sequences $a = a_1, \dots, a_m$ and $b = b_1, \dots, b_n$
- Find the longest common subsequence of *a* and *b* (obtained by removing symbols in *a* or *b*).

Modeling as a shortest path problem

- Grid graph with nodes $(i, j), 0 \le i \le m, 0 \le j \le n$.
- Horizontal and vertical arcs of length 1.
- Diagonal arcs ((i-1, j-1), (i, j)) of length 0, if $a_i = b_j$.

The diagonal arcs on a shortest path from (0,0) to (m, n) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions $I : A \rightarrow \mathbb{Q}$.
- A directed circuit is a walk $P = (v_0, a_1, v_1, \dots, a_k, v_k)$ with $k \ge 1$ and $v_0 = v_k$ such that v_1, \dots, v_k and a_1, \dots, a_k are all different.
- If *D* = (*V*, *A*) contains a directed circuit of negative length, there exist *s*-*t* walks of arbitrary small negative length.

Proposition

Let D = (V, A) be a directed graph without circuits of negative length. For any $s, t \in V$ for which there exists at least one *s*-*t* walk, there exists a shortest *s*-*t* walk, which is a path.

Shortest paths with arbitrary lengths

 $D=(V,A), n=\big|V\big|, I:A \longrightarrow \mathbb{Q}.$

Algorithm (Bellman-Ford 1956/58)

Compute $f_0, ..., f_n : V \to \mathbb{R} \cup \{\infty\}$ in the following way:

Initialization: $f_0(s) = 0$, $f_0(v) = \infty$, for $v \in V \setminus \{s\}$ Iteration: For k = 1, ..., n and all $v \in V$: $f_k(v) = \min\{f_{k-1}(v), \min_{(u,v) \in A}(f_{k-1}(u) + I(u,v))\}$

Running time: O(|V||A|)

Example

2003

.~1
∞
6
6
2
2
c

Properties

• For each k = 0, ..., n and each $v \in V$:

 $f_k(v) = \min\{I(P) \mid P \text{ is an } s - v \text{ walk traversing at most } k \text{ arcs}\}$

(by induction)

• If *D* contains no circuits of negative length, $f_{n-1}(v)$ is the length of a shortest path from *s* to *v*.

Finding an explicit shortest path

- When computing $f_0, ..., f_n$ determine a predecessor function $p: V \to V$ by setting p(v) = u whenever $f_{k+1}(v) = f_k(u) + l(u, v)$.
- At termination, $v, p(v), p(p(v)), \dots, s$ gives the reverse of a shortest *s*-*v* path.

Theorem

Given $D = (V, A), s, t \in V$ and $I : A \to \mathbb{Q}$ such that D contains no circuit of negative length, a shortest s-t path can be found in time O(|V||A|).

Remark

D contains a circuit of negative length reachable from *s* if and only if $f_n(v) \neq f_{n-1}(v)$, for some $v \in V$.

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem

Input: Directed graph D = (V, A), $s, t \in V$, $I : A \rightarrow \mathbb{Z}$, $L \in \mathbb{Z}$ *Question:* Does there exist an *s*-*t* path *P* with $I(P) \leq L$?

is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete. The longest path problem with non-negative lengths is NP-complete.

Application: Knapsack problem

• Knapsack, volume 8, 5 articles

Article i	Volume a _i	Value <i>c</i> i
1	5	4
2	3	7
3	2	3
4	2	5
5	1	4

• Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

- Shortest path model
 - Directed graph with nodes $(i, x), 0 \le i \le 6, 0 \le x \le 8$.
 - Arcs from (i-1, x) to (i, x) resp. $(i, x + a_i)$ of length 0 resp. $-c_i$, for $0 \le i \le 5$.
 - Arcs from (5, x) to (6, 8) of length 0, for $0 \le x \le 6$.
 - A shortest path from (0,0) to (6,8) gives an optimal solution.
 - \rightsquigarrow pseudo-polynomial algorithm
- Linear 0-1 model

$$\max\{4x_1 + 7x_2 + 3x_3 + 5x_4 + 4x_5 \mid 5x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 \le 8, x_1, \dots, x_5 \in \{0, 1\}\}$$