Discrete Mathematics for Bioinformatics (P1)

WS 2010/11

Exercises 5

1. Bellman-Ford (Niveau I)

(a) Use the Bellman-Ford algorithm to determine the shortest path from source A to any other node in the graph.
(b) Let $D=(V, A), n=|V|$ be a directed graph. Prove that D contains a circuit of negative length reachable from s if and only if $f_{n}(v) \neq f_{n-1}(v)$, for some $v \in V$, where $f_{k}(v)=\min \{l(P) \mid P$ is an $s-v$ walk traversing at most k arcs $\}$

2. Network Flow (Niveau II) Prove the Theorem:

For a network (V, E, s, t) with capacities cap : $E \rightarrow \mathbb{R}_{+}$the maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

$$
\max \{\operatorname{val}(f) \mid f \text { is a flow }\}=\min \{\operatorname{cap}(S, T) \mid(S, T) \text { is an }(s, t) \text {-cut }\}
$$

Hint: Show that the following conditions are equivalent:
(a) f is a maximum flow.
(b) The residual network G_{f} contains no augmenting path.
(c) $\operatorname{val}(f)=\operatorname{cap}(S, T)$ for some cut (S, T) of G

3. Ford-Fulkerson (Niveau I)

(a) Use the Ford-Fulkerson algorithm to find a maximum flow in the network

Start with the initial flow f. An edge label f / c means initial flow f and capacity c.
(b) Find a minimum cut proving the maximality of the flow.

4. Matching and Bipartite Graphs (Niveau I)

(a) Apply the matching augmenting algorithm for bipartite graphs to the graph below and compute a maximum cardinality matching from the initial matching.

