
12 Repeat resolution

This exposition is based on the following sources, which are all recommended reading:

1. Separation of nearly identical repeats in shotgun assemblies using defined nucleotide positions, DNPs,
Tammi et al, Bioinformatics 2002

2. Correcting errors in shotgun sequences, Tammi et al, Nucleic acids research, 2003

3. DNPTrapper: an assembly editing tool for finishing and analysis of complex repeat regions, Arner et al,
BMC Bioinformatics, 2005

4. Separating repeats in DNA sequence assembly, Kececioglu and Yu, RECOMB 2001

12.1 Problem definition

In many applications in NGS based Bioinformatics, we face the same problem. We are given a collection of
reads which have a high degree of sequence similarity, resulting for example to being mapped at a (but not
only) specific genomic location.

• During assembly: Reads from repetitive regions of one genome, or similar reads from closely related
organisms in metagenomic samples are falsely drawn together.

• In quantitative analysis: Even if a reference genome is given, reads can be mapped to several locations,
or vice versa, to a specific location many reads are mapped that do not stem from that region (or even
that organism). This confounds methods like RNA-Seq or metagenomic abundance estimation likewise.

In the following we will address the problem at hand as the repeat resolution problem, no matter where the
closely related reads stem from.

12.2 Problem definition

In a previous lecture we saw a correction method for genomic abundances that worked well even for closely
related genomes, but is not able to assign an individual read to its correct location (in a repeat copy resp. a
different genome).

In this lecture we formalize the problem of repeat resolution and show a statistical method to find signals
that point to differences that are due to repeats and not due to sequencing errors.

Assume we have collected a set of pairwise overlapping reads and formed a multialignment with them
(i.e. a contig).

The presented method is based upon the fact that errors in a repetitive contig and the errors in a non-
repetitive contig are differently distributed. In a non-repetitive contig errors in overlaps can be explained by
sequencing errors which should occur independently from each other in each read.

In contrast to this, repetitive contigs by definition consist of reads that are from instances of a repeat from
different genomic locations. Depending on the nature of a repeat, two instances differ from each other by a
certain amount.

The following figure shows sequencing errors (in red) and microheterogeneity of a collapsed repeat (in
blue).
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The columns in blue are called separating columns (by Kececioglu) or Defined Nucleotide Positions (DNPs) by
Tammi. It is clear that these positions can be used to a) determine, whether there is a compressed repeat, and
b) to resolve the compression into the different repeat copies.

There is a number of algorithmic problems one has to address in repeat resolution:

1. Locating the positions in the layout where there is a possible compression due to repeats.

2. Bounding the region for the analysis of DNPs.

3. Identifying the DNPs.

4. Separating the set of fragments into subsets belonging to different instances of a repeat.

We will concentrate on the third and fourth point and quickly go over the first two.

Locating the region can be done by using statistical test involving the coverage in a layout (for example
by comparing abundances to corrected abundances), or by examining divergent overlaps,

For bounding the region of analysis we introduce a reasonable approach choosen by Tammi. They choose
a seed read and form a multi-alignment using all 1st order and 2nd order overlaps. The alignment is optimizied
using the program Realigner to remove hopefully most of the alignment errors.

The next picture shows this procedure.
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12.3 Finding DNPs

After the multialignment is computed we want to determine the DNPs. To do this both, Kececioglu and Tammi,
propose a simple method.

For Kececioglu a candidate separating column in an alignment of depth d is one in which a pair of rows
agrees on a character with frequency at most bd/2c. A candidate column is supported by another column if
they are candidates on the same pair of rows. The number t of mutually supporting columns is the support of
the separating column.

Tammi has a similar approach except that they do not require only a pair of positions for support but Dmin
many positions. However, they need only one column for support.

These approaches work reasonable well, however they neglect one important piece of information avail-
able, the quality values for a sequence read. Recall that the quality values encode the probability that the base
is indeed correct. Tammi at all address this case, although in a limited fashion.

12.4 Definitions

Consider two fixed positions u and v in an alignment. All definitions for u are similar for v.

Let au, j be the base at position u in for the j-th sequence. Let Iu, j be the indicator for the event that the base
at position u of the read j deviates from consensus. If this is the case, the variable is 1 otherwise 0. The total
number of deviations from consensus at position u is Nu =

∑k
j=1 Iu, j.

Let I j = Iu, jIv, j be the indicator for a coincidence in the j-th sequence. Finally, C =
∑k

j=1 I j is the total number
of coincidences.

The authors then assume independence of the deviation from consensus which is clearly not always true
but yields an approximation.

12.5 An exact formula

Tammi derives the distribution of C given the observed values Nu = nu and Nv = nv. They argue that an exact
formula is very complicated if the error probabilities are unevenly distributed. However, if one assumes that
all p are uniformly distributed, then one can apply standard combinatorics to derive that C given Nu and Nv is
hypergeometrically distributed. Or written differently:

P(C = x) =

(nv
x
)(k−nv

nu−x
)( k

nu

) ,

0 ≤ x ≤ nv, 0 ≤ nu − x ≤ k − nv.

This is true, since when all ps are identical, each possible configuration has equal probability.

By considering the nv deviations from the consensus in position v as fixed, the denominator above gives
the total number of ways to distribute nu deviations among k sites, and the numerator the number of ways to
do this resulting in x coincidences.

As a reminder: the standard definition of a hypergeometric distribution is: In a bucket are N balls, M of
which are white and N −M are black. If you draw n balls without returning them, then the probability that
you have k white balls is:

Pk(N,M,n) =

(M
k
)(N−M

n−k
)(N

n
) ,

So the conditional distribution is easy to compute if all ps are equal, which they are not. Hence Tammi
argues now as follows: Since all values of p are quite small, the unconditional distribution of C is well
approximated by a Poisson distribution. In addition, the conditioning on Nu and Nv only introduces weak
dependencies, which implies that the Poisson approximation should still be satisfactory.
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Hence we have to compute the mean parameter of the Poisson distribution

λ = E(C | Nu = nu,Nv = nv).

12.6 The Poisson approximation

From the definition of C follows:

E(C | Nu = nu,Nv = nv) =

k∑
j=1

E(Iu, j = 1 | Nu = nu)E(Iv, j = 1 | Nv = nv).

Furthermore it holds:

P(Iu, j = 1 | Nu = nu) =
P(Iu, j = 1,Nu = nu)

P(Nu = nu)

=
P(Iu, j = 1,N( j)

u = nu − 1)

P(Iu, j = 1,N( j)
u = nu − 1) + P(Iu, j = 0,N( j)

u = nu)

where N( j) = Nu − Iu, j denotes the total number of deviations from consensus at site u excluding read j.

Note that Iu, j and N( j)
u are independent. Furthermore Nu and N( j)

u are approximately Poisson distributed.
Let λu =

∑
i=1 pu,i and λ( j)

u = λu − pu, j, respectively, denote the means of those distributions. It follows that

P(Iu, j = 1,N( j)
u = nu − 1)

P(Nu = nu)

is approximately (
pu, je−λ

( j)
u λ( j)nu−1

u /(nu − 1)!
)
/

(
pu, je−λ

( j)
u λ( j)nu−1

u /(nu − 1)! + (1 − pu, j)e−λ
( j)
u λ( j)nu

u /nu!
)

This becomes approximately

P(Iu, j = 1,N( j)
u = nu − 1)

P(Nu = nu)
≈

nupu, j

nupu, j + λ( j)
u (1 − pu, j)

.

A corresponding result applies to P(Iv, j = 1 | Nv = nv) and we conclude that E(C | Nu = nu,NV = nv) is
approximately

k∑
j=1

 nupu, j

nupu, j + λ( j)
u (1 − pu, j)

×
nvpv, j

nvpv, j + λ( j)
v (1 − pv, j)

 .
Hence, the suggested approximation of the distribution of C given Nu = nu and Nv = nv, is to approximate

it with the Poisson distribution having the mean specified above.

This again implies that the hypothesis that coincidences occur by chance rather than for systematic reasons
can be tested by comparing the observed values of cobs with what to expect from the derived approximate
distribution.

We compute pcorr = 1 −
∑cobs−1

i=0 po(i), where po(i) is the probability function for the above Possion variable
with mean E(C | Nu = nu,NV = nv). pcorr is the probability of observing cobs or more coincidences between
columns u and v. The hypothesis is accepted if pcorr is greater than pcorr

max.

(If there are columns with a large number of differences Tammi gives a possible correction.)
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12.7 Results of Tammis methods

In order to evaluate the method, five sets of simulations were performed. Real quality value files from shotgun
data was used and for those repeats were artifically introduced, namely of length 1000, 2000, 3000 bases
repeated 4, 6, 8 and 10 times in tandem. The repeats differ 1 percent from each other

The first three sets of simulations differ only in the amount of sequencing error (via quality trimming).
The average error rates are 4.3, 3.3 and 2.6 percent, respectively. Set 4 and 5 each have an average quality of 2.6
and differ in the coverage (3.5 to 10.2).

First we look at the separation power of the number of observed deviations from consensus and plot
those caused by sequencing errors together with those caused by real differences. (Data sim3 with 10 tandem
repeats).

Now we look at the separation power of the number of observed coincidences and plot those caused by
sequencing errors together with those caused by real differences.



Repeat resolution, by Knut Reinert, November 27, 2012, 13:35 12005

As expected, it is not sufficient to look only at single columns in the sequence alignment, whereas for
coincidences the distributions are clearly separated for Dmin > 2.

Next we look at the error rate (i.e. how often do I call a DNPs when it was not a DNP) and the sensitivity
(How many of the real DNPs did I find) of the different situations (ignore the value ST).

Here the error rate and sensitivity of Tammi’s basic method.
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We look now at the error rate and sensitivity of Tammi’s extended method first.
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12.8 Separating repeat copies

Now we have identified a number of DNPs. How do we use them to separate the reads into groups belonging
to the different repeat copies?

Here Kececioglu took a rigorous approach. Assume that there are k copies of a repeat. Hence, we ideally would
like to partition the reads into k classes P1,P2, . . . ,Pk together with k consensus strings S1,S2, . . . ,Sk such that
the overall number of errors

∑
1≤i≤k

∑
F∈Pi

D(F,Si) is minimized.

This function is hard to compute but we can approximate it nicely by a) only considering DNP columns,
and b) by choosing one of the strings in the partition as consensus string (this is reasonable, since there are not
many DNPs and hence it is likely that one sequence of a group has indeed the consensus characters at the DNP
positions).
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Thus our objective function is to find a partition into k groups that minimizes:∑
1≤i≤k

min
F∗∈Pi
{

∑
F∈Pi

H(F,F∗)}

where H(·, ·) is the Hamming distance.

The above problem can be cast as a graph theoretical problem.

If we consider a complete, edge weighted graph Kn (vertices correspond to the reads, edges are weighted
with the Hamming distance), our task is to find k star centers and an edge set that spans all vertices such that
the overall weight of all choosen edges is minimized.

This problem can be formulated as an ILP and solved by a branch-and-bound algorithm. Given a Kn the
ILP has n2 + n variables:

• for each ordered pair (i, j), where i and j are vertices in Kn, there is a variable xi j.

• for each vertex i in Kn there is a variable yi.

The ILP wants to minimize
∑

i, j wi jxi j and has a O(n2) constraints:

• ∀i and j, xi j ≥ 0,

• ∀i, yi ≥ 0,

• ∀ j,
∑

1≤i≤n xi j ≥ 1

• ∀i and j, yi ≥ xi j, and

•
∑

1≤i≤n yi = k

This ILP is solved by computing the LP relaxation and a simple application of the branch-and-bound
paradigm.

Integer solutions in each node of the enumeration tree are computed by rounding in such a way, that those
k vertices are choosen as star centers that have the heighest average fractional weight by adjacent edges.

As branching variables those xi j are choosen whose fractional value is nearest to 0.5. (If the xi j are integral
so are the y j.)

• Repeat resolution is an important practical problem arising in shotgun sequence assembly projects.

• It can be divided into four subproblems: Locating the repeat region, Bounding the area of analysis,
Identifying DNPs, and Separating repeat copies.

• Tammi et al propose a statistical method that perfoms well for identifying DNPs

• Kececioglu gives a nice formulation to solve the separation problem.

• So far no approach uses mate pairs as additional information.
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