
4 Fast filtering algorithms

This exposition is based on

1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 6.5, pages 162ff.

We present the hierarchical filtering approach called PEX of Navarro and Baeza-Yates.

4.1 Filtering algorithms

The idea behind filtering algorithms is that it might be easier to check that a text position does not match a
pattern string than to verify that it does.

Filtering algorithms filter out portions of the text that cannot possibly contain a match, leaving positions
that could match.

The potential match positions then need to be verified with another algorithm like for example the bit-
parallel algorithm of Myers (BPM).

Filtering algorithms are very sensitive to the error level α := k/m since this normally affects the amount of
text that can be discarded from further consideration. (m = pattern length, k = errors.)

If most of the text has to be verified, the additional filtering steps are an overhead compared to the strategy
of just verifying the pattern in the first place.

On the other hand, if large portions of the text can be discarded quickly, then the filtering results in a faster
search.

Filtering algorithms can improve the average-case performance (sometimes dramatically), but not the
worst-case performance.

Assume that we want to find all occurrences of a pattern P = p1, . . . , pm in a text T = t1, . . . , tn that have an
edit distance of at most k.

If we divide the pattern into k + 1 pieces P = p1, . . . , pk+1, then at least one of the pattern pieces match without
error.

There is a more general version of this principle first formalized by Myers in 1994:

Lemma 1. Let Occ match P with k errors, P = p1, . . . , p j be a concatenation of subpatterns, and a1, . . . , a j be nonnegative
integers such that A =

∑ j
i=1 ai. Then, for some i ∈ 1, . . . , j, Occ includes a substring that matches pi with at most baik/Ac

errors.

Proof: Exercise.

So the basic procedure is:

1. Divide: Divide the pattern into k + 1 pieces of approximately the same length.

2. Search: Search all the pieces simultaneously with a multi-pattern string matching algorithm. According
to the above lemma, each possible occurrence will match at least one of the pattern pieces.

3. Verify: For each found pattern piece, check the neighborhood with a verification algorithm that is able to
detect an occurrence of the whole pattern with edit distance at most k. Since we allow indels, if pi1 . . . pi2
matches the text t j . . . t j+i2−i1 , then the verification has to consider the text area t j−(i1−1)−k . . . t j+(m−i1)+k, which
is of length m + 2k.

4.2 An example

Say we want to find the pattern annual in the texts

t1 = any annealing and

t2 = an unusual example with numerous veri f ications

with at most 2 errors.

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 5, 2012, 13:14 4001

1. Divide: We divide the pattern annual into p1 = an, p2 = nu, and p3 = al. One of these subpattern has to
match with 0 errors.

2. Search: We search for all subpatterns:

1: searching for an: in t_1: find positions 1, 5

in t_2: find position 1

2: searching for nu: in t_1: find no positions

in t_2: find positions 5, 25

3: searching for al: in t_1: find position 9

in t_2: find position 9

3. Verification: We have to verify 3 positions in t1, and 4 positions in t2, to find 3 occurrences in t1 and none
in t2.

4.3 Hierarchical verification

The toy example makes clear that many verifications can be triggered that are unsuccesssful and that many
subpatterns can trigger the same verification. Repeated verfications can be avoided by carefully sorting the
occurrences of the pattern.

It was shown by Baeza-Yates and Navarro that the running time is dominated by the multipattern search

for error levels α = k/m below 1/(3 log
|Σ|m). In this region, the search cost is about O(kn

log
|Σ| m
m). For higher error

levels, the cost for verifications starts to dominate, and the filter efficiency deteriorates abruptly.

Baeza-Yates and Navarro introduced the idea of hierarchical verification to reduce the verification costs,
which we will explain next. Then we will work out more details of the three steps.

Navarro and Baeza-Yates use Lemma 1 for a hierarchical verification. The idea is that, since the verification
cost is high, we pay too much for verifying the whole pattern each time a small piece matches. We could possibly
reject the occurrence with a cheaper test for a shorter pattern.

So, instead of directly dividing the pattern into k+1 pieces, we do it hierarchically. We split the pattern first
in two pieces and search for each piece with bk/2c errors, following Lemma 1. The halves are then recursively
split and searched until the error rate reaches zero, i. e. we can search for exact matches.

With hierarchical verification the area of applicability of the filtering algorithm grows to α < 1/ log
|Σ|m, an

error level three times as high as for the naive paritioning and verification. In practice, the filtering algorithm
pays off for α < 1/3 for medium long patterns.

Example. Say we want to find the pattern P = aaabbbcccddd in the text T = xxxbbbxxxxxx with at most
k = 3 differences. The pattern is split into four pieces p1 = aaa, p2 = bbb, p3 = ccc, p4 = ddd. We search with
k = 0 errors in level 2 and find bbb.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 aaabbb cccddd with k=1 errors

/ \ / \

level 2 aaa bbb ccc ddd with k=0 errors

Now instead of verifying the complete pattern in the complete text (at level 0) with k = 3 errors, we only
have to check a slightly bigger pattern (aaabbb) at level 1 with one error. This is much cheaper. In this example
we can decide that the occurrence bbb cannot be extended to a match.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 AAABBB cccddd with k=1 errors

/ \ / \

level 2 aaa BBB ccc ddd with k=0 errors

4002 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 5, 2012, 13:14

4.4 The PEX algorithm

Divide: Split pattern into k + 1 pieces, such that each piece has equal probability of occurring in the text. If no
other information is available, the uniform distribution is assumed and hence the pattern is divided in pieces
of equal length.

Build Tree: Build a tree of the pattern for the hierarchical verification. If k + 1 is not a power of 2, we try
to keep the binary tree as balanced as possible.

Each node has two members f rom and to indicating the first and the last position of the pattern piece
represented by it. The member err holds the number of allowed errors. A pointer myParent leads to its parent
in the tree. (There are no child pointers, since we traverse the tree only from the leafs to the root.) An internal
variable le f t holds the number of pattern pieces in the left subtree. idx is the next leaf index to assign. plen is
the length of a pattern piece.

Algorithm CreateTree generates a hierarchical verification tree for a single pattern. (Lines 12 and 14 are
justified by Lemma 1.)

(1) CreateTree(p = pipi+1 . . . p j, k, myParent, idx, plen)
(2) // Note: the initial call is: CreateTree (p, k, nil, 0, bm/(k + 1)c)
(3) Create new node node
(4) f rom(node) = i
(5) to(node) = j
(6) le f t = d(k + 1)/2e
(7) parent(node) = myParent
(8) err(node) = k
(9) if k = 0

(10) then lea fidx = node
(11) else
(12) lk = b(le f t · k)/(k + 1)c
(13) CreateTree(pi . . . pi+le f t·plen−1, lk, node, idx, plen)
(14) rk = b((k + 1 − le f t) · k)/(k + 1)c
(15) CreateTree(pi+le f t·plen . . . p j, rk, node, idx + le f t, plen)
(16) fi

Example: Find the pattern P = annual in the text T = annual CPM anniversary with at most k = 2 errors.
First we build the tree with k + 1 = 3 leaves. Below we write at each node ni the variables (f rom, to, error) .

"annual" n4=(1,6,2)

/ \

"annu" n3=(1,4,1) \

/ \ \

"an" n0=(1,2,0) "nu" n1=(3,4,0) "al" n2=(5,6,0)

| | |

leaf 0 leaf 1 leaf 2

Search: After constructing the tree, we have k + 1 leafs lea fi. The k + 1 subpatterns

{ p f rom(n), . . . , pto(n), n = lea fi, i ∈ {0, . . . , k} }

are sent as input to a multi-pattern search algorithm (e. g. Aho-Corasick, Wu-Manbers, or SBOM). This algorithm
gives as output a list of pairs (pos, i) where pos is the text position that matched and i is the number of the piece
that matched.

The PEX algorithm performs verifications on its way upward in the tree, checking the presence of longer
and longer pieces of the pattern, as specified by the nodes.

(1) Search phase of algorithm PEX
(2) for (pos, i) ∈ output of multi-pattern search do
(3) n = lea fi; in = f rom(n); n = parent(n);
(4) cand = true;

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, November 5, 2012, 13:14 4003

(5) while cand = true and n , nil do
(6) p1 = pos − (in − f rom(n)) − err(n);
(7) p2 = pos + (to(n) − in) + err(n);
(8) verify text tp1 . . . tp2 for pattern piece p f rom(n) . . . pto(n)
(9) allowing err(n) errors;

(10) if pattern piece was not found
(11) then cand = f alse;
(12) else n = parent(n);
(13) fi
(14) od
(15) if cand = true
(16) then report the positions where the whole p was found;
(17) fi
(18) od

We search for annual in annual CPM anniversary. We constructed the tree for annual. A multi-pattern
search algorithm finds: (1, 1), (12, 1), (3, 2), (5, 3). (Note that leaf i corresponds to pattern pi+1). For each of these
positions we do the hierarchical verification:

Initialization for (1,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=1-(1-1)-1=0; p2=1+(4-1)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=1-(1-1)-2=-1; p2=1+(6-1)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

Initialization for (3,2);

n=n1; in=3; n=n3; cand=true;

While loop;

a) p1=3-(3-1)-1=0; p2=3+(4-3)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=3-(3-1)-2=-1; p2=3+(6-3)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

Initialization for (12,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=12-(1-1)-1=11; p2=12+(4-1)+1=16;

verify pattern annu in text _anniv with 1 error => found !

b) p1=12-(1-1)-2=10; p2=12+(6-1)+2=19;

verify pattern annual in text M_annivers => NOT found !

Note that sorting of the leaf matches would avoid verifying the match three times.

4.5 Summary

• Filtering algorithms prevent a large portion of the text from being looked at.

• The larger α = k/m, the less efficient filtering algorithms become.

• Filtering algorithms based on the pigeonhole principle need an exact, multi-pattern search algorithm and
a verification capable approximate string matching algorithm.

• The PEX algorithm starts verification from short exact matches and considers longer and longer substrings
of the pattern as the verification proceeds upward in the tree.

	Bit vector based approximate string matching
	The classical algorithm
	Computing the score in linear space
	Ukkonen's algorithm
	Pseudocode of Ukkonen's algorithm
	Running time of Ukkonen's algorithm
	Encoding and parallelizing the DP matrix
	Encoding the DP matrix
	Observations
	Resolving circular dependencies
	Computing D0
	Preprocessing the alphabet
	Myers' bit-vector algorithm
	The example
	Banded Myers' bit vector algorithm
	Preprocessing and Searching
	Edit distance
	Filtering algorithms
	An example
	Hierarchical verification
	The PEX algorithm
	Summary

