
3.1 Bit vector based approximate string matching

In the following we will focus on pairwise string alignments minimizing the edit distance. The algorithms
covered are:

1. The classical dynamic programming algorithm, discovered and rediscovered many times since the 1960’s.
It computes a DP table indexed by the positions of the text and the pattern.

2. This can be improved using an idea due to Ukkonen, if we are interested in hits of a pattern in a text with
bounded edit distance (which is usually the case).

3. The latter can be further speeded up using bit parallelism by an algorithm due to Myers. The key idea is
to represent the differences between the entries in the DP matrix instead of their absolute values.

3.2 The classical algorithm

We want to find all occurences of a query P = p1p2 . . . pm that occur with k ≥ 0 differences (substitutions and
indels) in a text T = t1t2 . . . tn.

The classic approach computes in time O(mn) a (m + 1)× (n + 1) dynamic programming matrix C[0..m, 0..n]
using the recurrence

C[i, j] = min

C[i − 1, j − 1] + δi j

C[i − 1, j] + 1
C[i, j − 1] + 1

 ,
where

δi j =

0, if pi = t j,
1, otherwise.

Each location j in the last (m-th) row with C[m, j] ≤ k is a solution to our query.

The matrix C is initialized:

• at the upper boundary by C[0, j] = 0, since an occurrence can start anywhere in the text, and

• at the left boundary by C[i, 0] = i, according to the edit distance.

Example. We want to find all occurences with less than 2 differences of the query annual in the text
annealing. The DP matrix looks as follows:

A N N E A L I N G

0 0 0 0 0 0 0 0 0 0

A 1 0 1 1 1 0 1 1 1 1
N 2 1 0 1 2 1 1 2 2 2
N 3 2 1 0 1 2 2 2 2 2
U 4 3 2 1 1 2 3 3 3 3
A 5 4 3 2 2 1 2 3 4 4
L 6 5 4 3 3 2 1 2 3 4

3.3 Computing the score in linear space

A basic observation is that the score computation can be done in O(m) space because computing a column C j
only requires knowledge of the previous column C j−1. Hence we can scan the text from left to right updating
our column vector and reporting a match every time C[m, j] ≤ k.

Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:133001

sequence x

sequence y

activein memory

initial case

recursive case

� � � �
� � � �
� � � �
� � � �

� �� �� �� �

� �� �� �� �

sequence x

sequence y

activein memory

initial case

recursive case

� �
� �
� �
� �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

sequence x

sequence y

activein memory

initial case

recursive case

� �
� �
� �
� �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

sequence x

sequence y

activein memory

initial case

recursive case

� �
� �
� �
� �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

sequence x

sequence y

activein memory

initial case

recursive case

� �
� �
� �
� �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

sequence x

sequence y

activein memory

initial case

recursive case

� �
� �
� �
� �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

sequence x

sequence y

activein memory

initial case

recursive case

� �
� �
� �
� �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

The approximate matches of the pattern can be output on-the-fly when the final value of the column vector
is (re-)calculated.

The algorithm still requires in O(mn) time to run, but it uses only O(m) memory.

Note that in order to obtain the actual alignment (not just its score), we need to trace back by some other
means from the point where the match was found, as the preceeding columns of the DP matrix are no longer
available.

3002Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:13

3.4 Ukkonen’s algorithm

Ukkonen studied the properties of the dynamic programming matrix and came up with a simple twist to the
classical algorithm that retains all of its flexibility while reducing the running time to O(kn) (as opposed to
O(mn)) on average.

The idea is that since the pattern will normally not match the text, the entries of each column read from
top to bottom will quickly reach k + 1. Let us call an entry of the DP matrix active if its value is at most k.
Ukkonens algorithm maintains an index lact pointing to the last active cell and updates it accordingly. Due to
the properties of lact it can avoid working on subsequent cells.

In the exercises you will prove that the value of lact can decrease in one iteration by more than one, but it
can never increase by more than one.

3.5 Pseudocode of Ukkonen’s algorithm

(1) // Preprocessing
(2) for i ∈ 0 . . .m do Ci = i; od
(3) lact = k + 1;
(4) // Searching
(5) for pos ∈ 1 . . . n do
(6) Cp = 0; Cn = 0; pos − 1 pos

i − 1 Cp [was: Cn]

i Ci Cn

(7) for i ∈ 1 . . . lact do
(8) if pi = tpos
(9) then Cn = Cp;

(10) else
(11) if Cp < Cn then Cn = Cp; fi
(12) if Ci < Cn then Cn = Ci; fi
(13) Cn++;
(14) fi
(15) Cp = Ci; Ci = Cn;
(16) od
(17) // Updating lact
(18) while Clact > k do lact−−; od
(19) if lact = m then report occurrence
(20) else lact++;
(21) fi
(22) od

3.6 Running time of Ukkonen’s algorithm

Ukkonen’s algorithm behaves like a standard dynamic programming algorithm, except that it maintains and
uses in the main loop the variable lact, the last active cell.

The value of lact can decrease in one iteration by more than one, but it can never increase more than one
(why?). Thus the total time over the run of the algorithm spent for updating lact is O(n). In other words, lact is
maintained in amortized constant time per column.

One can show that on average the value of lact is bounded by O(k). Thus Ukkonen’s modification of the
classical DP algorithm has an average running time of O(kn).

3.7 Encoding and parallelizing the DP matrix

Next we will look at Myers’ bit-parallel algorithm which – in combination with Ukkonens trick – yields a
remarkably fast algorithm, which was used e. g. for the overlap computations performed at Celera are the
starting point for genome assembly.

For simplicity, we assume that m is smaller than w the length of a machine word.

Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:133003

The main idea of following the bit-vector algorithm is to parallelize the dynamic programming matrix.
We will compute the column as a whole in a series of bit-level operations. In order to do so, we need to

1. encode the dynamic programming matrix using bit vectors, and

2. resolve the dependencies (especially within the columns).

3.8 Encoding the DP matrix

The binary encoding is done by considering the differences between consecutive rows and columns instead of
their absolute values. We introduce the following nomenclature for these differences (“deltas”):

horizontal adjacency property ∆hi, j = Ci, j − Ci, j−1 ∈ {−1, 0,+1}
vertical adjacency property ∆vi, j = Ci, j − Ci−1, j ∈ {−1, 0,+1}

diagonal property ∆di, j = Ci, j − Ci−1, j−1 ∈ {0,+1}

Exercise. Prove that these deltas are indeed within the claimed ranges.

The delta vectors are encoded as bit-vectors by the following boolean variables:

• VPi j ≡ (∆vi, j = +1), the vertical positive delta vector

• VNi j ≡ (∆vi, j = −1), the vertical negative delta vector

• HPi j ≡ (∆hi, j = +1), the horizontal positive delta vector

• HNi j ≡ (∆hi, j = −1), the horizontal negative delta vector

• D0i j ≡ (∆di, j = 0), the diagonal zero delta vector

The deltas and bits are defined such that

∆vi, j = VPi, j − VNi, j

∆hi, j = HPi, j −HNi, j

∆di, j = 1 −D0i, j .

It is also clear that these values “encode” the entire DP matrix C[0..m, 0..n] by C(i, j) =
∑i

r=1 ∆vr, j. Below is our
example matrix with ∆vi, j values.

∆vi, j: A N N E A L I N G

0 0 0 0 0 0 0 0 0 0

A 1 0 1 1 1 0 1 1 1 1
N 1 1 -1 0 1 1 0 1 1 1
N 1 1 1 -1 -1 1 1 0 0 0
U 1 1 1 1 0 0 1 1 1 1
A 1 1 1 1 1 -1 -1 0 1 1
L 1 1 1 1 1 1 -1 -1 -1 0

We denote by score j the edit distance of a pattern occurrence ending at text position j. The key ideas of
Myers’ algorithm are as follows:

1. Instead of computing C we compute the ∆ values, which in turn are represented as bit-vectors.

2. We compute the matrix column by column as in Ukkonen’s version of the DP algorithm.

3. We maintain the value score j using the fact that score0 = m and score j = score j−1 + ∆hm, j.

In the following slides we will make some observations about the dependencies of the bit-vectors.

3004Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:13

3.9 Observations

Lets have a look at the ∆s. The first observation is that

HNi, j ⇔ VPi, j−1 AND D0i, j .

Proof. If HNi, j then ∆hi, j = −1 by definition, and hence ∆vi, j−1 = 1 and ∆di, j = 0. This holds true, because
otherwise the range of possible values ({−1, 0,+1}) would be violated.

(i,j−1) (i,j)

(i−1,j)(i−1,j−1)

x+1 x

x

By symmetry we have:
VNi, j ⇔ HPi−1, j AND D0i, j .

The next observation is that

HPi, j ⇔ VNi, j−1 OR NOT (VPi, j−1 OR D0i, j) .

Proof. If HPi, j then VPi, j−1 cannot hold without violating the ranges. Hence ∆vi, j−1 is −1 or 0. In the first case
VNi, j−1 is true, whereas in the second case we have neither VPi, j−1 nor D0i, j

(i,j−1) (i,j)

(i−1,j)(i−1,j−1)

x x+1

x or x+1

Again by symmetry we have

VPi, j ⇔ HNi−1, j OR NOT (HPi−1, j OR D0i, j) .

Finally, D0i, j = 1 iff C[i, j] and C[i−1, j−1] have the same value. This can be true for three possible reasons,
which correspond to the three cases of the DP recurrence:

Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:133005

1. pi = t j, that is the query at position i matches the text at position j.

2. C[i, j] is obtained by propagating a lower value from the left, that is C[i, j] = 1 + C[i, j − 1]. Then we have
VNi, j−1.

3. C[i, j] is obtained by propagating a lower value from above, that is C[i, j] = 1 + C[i − 1, j]. Then we have
HNi, j−1.

So writing this together yields:

D0i, j ⇔ (pi = t j) OR VNi, j−1 OR HNi−1, j .

Taking everything together we have the following equivalences:

HNi, j ⇔ VPi, j−1 AND D0i, j (3.1)
VNi, j ⇔ HPi−1, j AND D0i, j (3.2)
HPi, j ⇔ VNi, j−1 OR NOT (VPi, j−1 OR D0i, j) (3.3)
VPi, j ⇔ HNi−1, j OR NOT (HPi−1, j OR D0i, j) (3.4)
D0i, j ⇔ (pi = t j) OR VNi, j−1 OR HNi−1, j (3.5)

Can these be used to update the five bit-vectors as the algorithms searches through the text?

3.10 Resolving circular dependencies

In principle the overall strategy is clear: We traverse the text from left to right and keep track of five bit-vectors
VN j, VP j, HN j, HP j, D0 j, each containing the bits for 1 ≤ i ≤ m. For moderately sized patterns (m ≤ w) these
fit into a machine word. The reduction to linear space works similar as for C.

It is clear that we initalize VP0 = 1m, VN0 = 0m, so perhaps we can compute the other bit-vectors using the
above observations.

There remains a problem to be solved: D0i, j depends on HNi−1, j which in turn depends on D0i−1, j – a value
we have not computed yet. But there is a solution.

Let us have a closer look at D0i, j and expand it.

D0i, j = (pi = t j) OR VNi, j−1 OR HNi−1, j

HNi−1, j = VPi−1, j−1 AND D0i−1, j

⇒ D0i, j = (pi = t j) OR VNi, j−1 OR (VPi−1, j−1 AND D0i−1, j)

The formula
D0i, j = (pi = t j) OR VNi, j−1 OR (VPi−1, j−1 AND D0i−1, j)

is of the form
D0i = Xi OR (Yi−1 AND D0i−1) ,

where

Xi := (t j = pi) OR VNi

and Yi := VPi .

Here we omitted the index j from notation for clarity. We solve for D0i. Unrolling now the first few terms we
get:

D01 = X1 ,

D02 = X2 OR (X1 AND Y1) ,
D03 = X3 OR (X2 AND Y2) OR (X1 AND Y1 AND Y2) .

In general we have:
D0i = OR i

r=1 (Xr AND Yr AND Yr+1 AND . . . AND Yi−1) .

3006Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:13

To put this in words, let s < i be such that Ys . . .Yi−1 = 1 and Ys−1 = 0 . Then D0i = 1 if Xr = 1 for some
s ≤ r ≤ i. That is, the first consecutive block of 1s in Y that is right of i or i itself must be covered by a 1 in X.
Here is an example:

Y = 00011111000011

X = 00001010000101

D0 = 00111110000111

A position i in D0 is set to 1 if one position to the right in Y is a 1 and in the consecutive runs of 1s from there
on or at position i is also an Xr set to 1.

3.11 Computing D0

Now we solve the problem to compute D0 from X and Y using bit-vector and arithmetic operations.

The first step is to compute the & of X and Y and add Y. The result will be that every Xr = 1 that is aligned
to a Yr = 1 will be propagated one position to the left of a block of 1s if we then add Y to the result.

Again our example:

Y = 00011111000011

X = 00001010000101

X & Y = 00001010000001

(X & Y) + Y = 00101001000100

· · ·

D0 = 00111110000111

Note the two 1s that got propagated to the end of the runs of 1s in Y.

However, note also the one 1 that is not in the solution but was introduced by adding a 1 in Y to a 0 in
(X & Y).

As a remedy we XOR the term with Y so only the bits that changed during the propagation stay turned
on. Again our example:

Y = 00011111000011

X = 00001010000101

X & Y = 00001010000001

(X & Y) + Y = 00101001000100

((X & Y) + Y) ∧ Y = 00110110000111

· · ·

D0 = 00111110000111

Now we are almost done. The only thing left to fix is the observation that there may be several Xr bits under
the same block of Y. Of those all but the first remain unchanged and hence will not be marked by the XOR.

To fix this and to account for the case X1 = 1 we OR the final result with X. Again our example:

Y = 00011111000011

X = 00001010000101

X & Y = 00001010000001

(X & Y) + Y = 00101001000100

((X & Y) + Y) ∧ Y = 00110110000111

(((X & Y) + Y) ∧ Y)) | X = 00111110000111

= D0 = 00111110000111

Now we can substitute X back by (pi = t j) OR VN and Y by VP.

Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:133007

3.12 Preprocessing the alphabet

The only thing left now in the computation of D0 is the expression pi = t j.

Of course we cannot check for all i whether pi is equal t j for all i. This would take time O(m) and defeat
our goal. However, we can preprocess the query pattern and the alphabet Σ. We use | Σ | many bit-vectors
B[α] | ∀α ∈ Σ with the property that B[α]i = 1 if pi = α. These vectors can easily be precomputed in time
O(| Σ | m).

Now we have everything together.

3.13 Myers’ bit-vector algorithm

(1) // Preprocessing
(2) for c ∈ Σ do B[c] = 0m od
(3) for j ∈ 1 . . .m do B[p j] = B[p j] | 0m− j10 j−1 od
(4) VP = 1m; VN = 0m;
(5) score = m;

(1) // Searching
(2) for pos ∈ 1 . . . n do
(3) X = B[tpos] | VN;
(4) D0 = ((VP + (X & VP)) ∧ VP) | X;
(5) HN = VP & D0;
(6) HP = VN | ∼ (VP | D0);
(7) X = HP� 1;
(8) VN = X & D0;
(9) VP = (HN � 1) | ∼ (X | D0);

(10) // Scoring and output
(11) if HP & 10m−1 , 0m

(12) then score += 1;
(13) else if HN & 10m−1 , 0m

(14) then score −= 1;
(15) fi
(16) fi
(17) if score ≤ k report occurrence at pos fi;
(18) od

Note that this algorithm easily computes the edit distance if we add in line 7 the following code fragment:
| 0m−11. This because in this case there is a horizontal increment in the 0-th row. In the case of reporting all
occurrences each column starts with 0.

3.14 The example

If we try to find annual in annealingwe first run the preprocessing resulting in:

a 0 1 0 0 0 1
l 1 0 0 0 0 0
n 0 0 0 1 1 0
u 0 0 1 0 0 0
* 0 0 0 0 0 0

3008Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:13

in addition

VN = 000000
VP = 111111

score 6

We read the first letter of the text, an a.

Reading a 010001
D0 = 111111

HN = 111111
HP = 000000
VN = 000000
VP = 111110

score 5

We read the second letter of the text, an n.

Reading n 000110
D0 = 111110

HN = 111110
HP = 000001
VN = 000010
VP = 111101

score 4

We read the third letter of the text, an n.

Reading n 000110
D0 = 111110

HN = 111100
HP = 000010
VN = 000100
VP = 111001

score 3

We read the fourth letter of the text, an e.

Reading e 000000
D0 = 000100

HN = 000000
HP = 000110
VN = 000100
VP = 110001

score 3

We read the fifth letter of the text an a.

Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:133009

Reading e 010001
D0 = 110111

HN = 110011
HP = 001100
VN = 010000
VP = 100110

score 2

and so on..... In the exercises you will extend the algorithm to handle queries larger than w.

3.15 Banded Myers’ bit vector algorithm

• Often only a small band of the DP matrix needs to be computed, e. g.:

– Global alignment with up to k errors (left)

0

0

k

k

s

t

initial case

recursive case

t

p

– Verification of a potential match returned by a filter (right)

Myers’ bit-vector algorithm is efficient if the number of DP rows is less or equal to the machine word
length (typically 64). For larger matrices, the bitwise operations must be emulated using multiple words at the
expense of running time.

Banded Myers’ bit vector algorithm:

• Adaption of Myers’ algorithm to calculate a banded alignment (Hyyrö 2003)

• Very efficient alternative if the band width is less than the machine word length

Algorithm outline:

• Calculate VP and VN for column j from column j − 1

• Right-shift VP and VN (see b)

• Use either D0 or HP,HN to track score (dark cells in c)

A Bit-Vector Algorithm for Computing Levenshtein and Damerau Edit Distances

a) b) c)

j -1 j j -1 j j -1 j

Figure 5: a) Horizontal tiling (left) and diagonal tiling (right). b) The figure shows
how the diagonal step aligns the (j − 1)th column vector one step above the jth
column vector. c) The figure depicts in gray the region of diagonals, which are filled
according to Ukkonen’s rule. The cells on the lower boundary are in darker tone.

have a value V Nj [lv] = 1. This is impossible, because it can happen only if D0j has
an ”extra” set bit at position lv +1 and HPj[lv] = 1, and these two conditions cannot
simultaneously be true.

In addition to the obvious way of first computing V Pj and V Nj in normal fashion
and then shifting them up (to the right) when processing the (j + 1)th column, we
propose also a second option. It can be seen that essentially the same shifting effect
can be achieved already when the vectors V Pj and V Nj are computed by making the
following changes on the last two lines of the algorithms in Figures 3 and 4:

-The diagonal zero delta vector D0j is shifted one step to the right on the second
last line.
-The left shifts of the horizontal delta vectors are removed.
-The OR-operation of V Pj with 1 is removed.

This second alternative uses less bit operations, but the choice between the two may
depend on other practical issues. For example if several bit vectors have to be used
in encoding D0j, the column-wise top-to-bottom order may make it more difficult to
shift D0j up than shifting both V Pj and V Nj down.

We also modify the way some cell values are explicitly maintained. We choose
to calculate the values along the lower boundary of the filled area of the dynamic
programming matrix (Figure 5c). For two diagonally consecutive cells D[i− 1, j − 1]
and D[i, j] along the diagonal part of the boundary this means setting D[i, j] =
D[i−1, j−1] if D0j[lv] = 1, and D[i, j] = D[i−1, j−1]+1 otherwise. The horizontal
part of the boundary is handled in similar fashion as in the original algorithm of Myers:
For horizontally consecutive cells D[i, j − 1] and D[i, j] along the horizontal part of
the boundary we set D[i, j] = D[i, j − 1] + 1 if HPj[lv] = 1, D[i, j] = D[i, j − 1] − 1
if HNj[lv] = 1, and D[i, j] = D[i, j − 1] otherwise. Here we assume that the vector
length lv is appropriately decremented as the diagonally shifted vectors would start
to protrude below the lower boundary.

Another necessary modification is in the way the pattern match vector PMj is
used. Since we are gradually moving the delta vectors down, the match vector has to
be aligned correctly. This is easily achieved in O(1) time by shifting and OR-ing the
corresponding at most two match vectors.

The last necessary modifications concern the first line of the algorithm for the
Damerau edit distance in Figure 4. First of all the diagonal delta vector D0j is
shifted down (left), which is not necessary when the vectors are tiled diagonally.

7

3010Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:13

3.16 Preprocessing and Searching

• Given a text t of length n and a pattern p of length m

• We consider a band of the DP matrix:

– consisting of w consecutive diagonals

– where the leftmost diagonal is the main diagonal shifted by c to left

0 nm− c

0

c

m

band width w

Now, we don’t encode the whole DP column but the intersection of a column and the band (plus one
diagonal left of the band). Thus we store only w vertical deltas in VP and VN. The lowest bits encode the
differences between the rightmost and the left adjacent diagonal.

The pattern bit mask computation remains the same.

(1) // Preprocessing
(2) for i ∈ Σ do B[i] = 0m od
(3) for j ∈ 1 . . .m do B[p j] = B[p j] | 0m− j10 j−1; od
(4) VP = 1w; VN = 0w;
(5) score = c;

Instead of shifting HP/HN to the left, we shift D0 to the right. Pattern bit masks must be shifted accordingly.

// Original
for pos ∈ 1 . . . n do

X = B[tpos] | VN;
D0 = ((VP + (X & VP)) ∧ VP) | X;
HN = VP & D0;
HP = VN | ∼ (VP | D0);
X = HP� 1;
VN = X & D0;
VP = (HN � 1) | ∼ (X | D0);
// Scoring and output
...

od

// Banded
for pos ∈ 1 . . . n do
// Use shifted pattern mask
B = (B[tpos]0w

� (pos + c)) & 1w;
X = B | VN;
D0 = ((VP + (X & VP)) ∧ VP) | X;
HN = VP & D0;
HP = VN | ∼ (VP | D0);
X = D0� 1;
VN = X & HP;
VP = HN | ∼ (X | HP);
// Scoring and output
...

od

The score value is tracked along the left diagonal and along the last row, beginning with score = c.
Bit w in D0 is used to track the diagonal differences and bit (w − 1) −

(
pos − (m − c + 1)

)
in HP/HN is used to

track the horizontal differences.

Bit vector algorithms for approximate string matching, by C. Gröpl, G. Klau, K. Reinert, October 22, 2012, 11:133011

(1) // Scoring and output
(2) if pos ≤ m − c
(3) then
(4) score += 1 −

((
D0� (w − 1)

)
& 1

)
;

(5) else
(6) s = (w − 2) −

(
pos − (m − c + 1)

)
;

(7) score += (HP� s) & 1;
(8) score −= (HN � s) & 1;
(9) fi

(10) if pos ≥ m − c ∧ score ≤ k report occurrence at pos fi;

3.17 Edit distance

In the beginning bit vectors partially encode cells outside the DP matrix. Depending on the search mode
(approximate search or edit distance computation) we initialize VP/VN according to the scheme below and
zero the pattern masks.

Approximate search Edit distance computation

-5 -5 -5 -5 -5 -5
-4 -4 -4 -4 -4 -4
-3 -3 -3 -3 -3 -3
-2 -2 -2 -2 -2 -2
-1 -1 -1 -1 -1 -1
0 0 0 0 0 0

1
2
3
4
5
6

0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

1
2
3
4
5
6

VP = 1w,VN = 0w VP = 1c+10w−c−1,VN = 0w

4000 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, October 22, 2012, 11:13

4 Fast filtering algorithms

This exposition is based on

1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 6.5, pages 162ff.

We present the hierarchical filtering approach called PEX of Navarro and Baeza-Yates.

4.1 Filtering algorithms

The idea behind filtering algorithms is that it might be easier to check that a text position does not match a
pattern string than to verify that it does.

Filtering algorithms filter out portions of the text that cannot possibly contain a match, leaving positions
that could match.

The potential match positions then need to be verified with another algorithm like for example the bit-
parallel algorithm of Myers (BPM).

Filtering algorithms are very sensitive to the error level α := k/m since this normally affects the amount of
text that can be discarded from further consideration. (m = pattern length, k = errors.)

If most of the text has to be verified, the additional filtering steps are an overhead compared to the strategy
of just verifying the pattern in the first place.

On the other hand, if large portions of the text can be discarded quickly, then the filtering results in a faster
search.

Filtering algorithms can improve the average-case performance (sometimes dramatically), but not the
worst-case performance.

Assume that we want to find all occurrences of a pattern P = p1, . . . , pm in a text T = t1, . . . , tn that have an
edit distance of at most k.

If we divide the pattern into k + 1 pieces P = p1, . . . , pk+1, then at least one of the pattern pieces match without
error.

There is a more general version of this principle first formalized by Myers in 1994:

Lemma 1. Let Occ match P with k errors, P = p1, . . . , p j be a concatenation of subpatterns, and a1, . . . , a j be nonnegative
integers such that A =

∑ j
i=1 ai. Then, for some i ∈ 1, . . . , j, Occ includes a substring that matches pi with at most baik/Ac

errors.

Proof: Exercise.

So the basic procedure is:

1. Divide: Divide the pattern into k + 1 pieces of approximately the same length.

2. Search: Search all the pieces simultaneously with a multi-pattern string matching algorithm. According
to the above lemma, each possible occurrence will match at least one of the pattern pieces.

3. Verify: For each found pattern piece, check the neighborhood with a verification algorithm that is able to
detect an occurrence of the whole pattern with edit distance at most k. Since we allow indels, if pi1 . . . pi2
matches the text t j . . . t j+i2−i1 , then the verification has to consider the text area t j−(i1−1)−k . . . t j+(m−i1)+k, which
is of length m + 2k.

4.2 An example

Say we want to find the pattern annual in the texts

t1 = any annealing and

t2 = an unusual example with numerous veri f ications

with at most 2 errors.

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, October 22, 2012, 11:13 4001

1. Divide: We divide the pattern annual into p1 = an, p2 = nu, and p3 = al. One of these subpattern has to
match with 0 errors.

2. Search: We search for all subpatterns:

1: searching for an: in t_1: find positions 1, 5

in t_2: find position 1

2: searching for nu: in t_1: find no positions

in t_2: find positions 5, 25

3: searching for al: in t_1: find position 9

in t_2: find position 9

3. Verification: We have to verify 3 positions in t1, and 4 positions in t2, to find 3 occurrences in t1 and none
in t2.

4.3 Hierarchical verification

The toy example makes clear that many verifications can be triggered that are unsuccesssful and that many
subpatterns can trigger the same verification. Repeated verfications can be avoided by carefully sorting the
occurrences of the pattern.

It was shown by Baeza-Yates and Navarro that the running time is dominated by the multipattern search

for error levels α = k/m below 1/(3 log
|Σ|m). In this region, the search cost is about O(kn

log
|Σ| m
m). For higher error

levels, the cost for verifications starts to dominate, and the filter efficiency deteriorates abruptly.

Baeza-Yates and Navarro introduced the idea of hierarchical verification to reduce the verification costs,
which we will explain next. Then we will work out more details of the three steps.

Navarro and Baeza-Yates use Lemma ?? for a hierarchical verification. The idea is that, since the verification
cost is high, we pay too much for verifying the whole pattern each time a small piece matches. We could possibly
reject the occurrence with a cheaper test for a shorter pattern.

So, instead of directly dividing the pattern into k+1 pieces, we do it hierarchically. We split the pattern first
in two pieces and search for each piece with bk/2c errors, following Lemma ??. The halves are then recursively
split and searched until the error rate reaches zero, i. e. we can search for exact matches.

With hierarchical verification the area of applicability of the filtering algorithm grows to α < 1/ log
|Σ|m, an

error level three times as high as for the naive paritioning and verification. In practice, the filtering algorithm
pays off for α < 1/3 for medium long patterns.

Example. Say we want to find the pattern P = aaabbbcccddd in the text T = xxxbbbxxxxxx with at most
k = 3 differences. The pattern is split into four pieces p1 = aaa, p2 = bbb, p3 = ccc, p4 = ddd. We search with
k = 0 errors in level 2 and find bbb.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 aaabbb cccddd with k=1 errors

/ \ / \

level 2 aaa bbb ccc ddd with k=0 errors

Now instead of verifying the complete pattern in the complete text (at level 0) with k = 3 errors, we only
have to check a slightly bigger pattern (aaabbb) at level 1 with one error. This is much cheaper. In this example
we can decide that the occurrence bbb cannot be extended to a match.

level 0 aaabbbcccddd with k=3 errors

/ \

level 1 AAABBB cccddd with k=1 errors

/ \ / \

level 2 aaa BBB ccc ddd with k=0 errors

4002 Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, October 22, 2012, 11:13

4.4 The PEX algorithm

Divide: Split pattern into k + 1 pieces, such that each piece has equal probability of occurring in the text. If no
other information is available, the uniform distribution is assumed and hence the pattern is divided in pieces
of equal length.

Build Tree: Build a tree of the pattern for the hierarchical verification. If k + 1 is not a power of 2, we try
to keep the binary tree as balanced as possible.

Each node has two members f rom and to indicating the first and the last position of the pattern piece
represented by it. The member err holds the number of allowed errors. A pointer myParent leads to its parent
in the tree. (There are no child pointers, since we traverse the tree only from the leafs to the root.) An internal
variable le f t holds the number of pattern pieces in the left subtree. idx is the next leaf index to assign. plen is
the length of a pattern piece.

Algorithm CreateTree generates a hierarchical verification tree for a single pattern. (Lines ?? and ?? are
justified by Lemma ??.)

(1) CreateTree(p = pipi+1 . . . p j, k, myParent, idx, plen)
(2) // Note: the initial call is: CreateTree (p, k, nil, 0, bm/(k + 1)c)
(3) Create new node node
(4) f rom(node) = i
(5) to(node) = j
(6) le f t = d(k + 1)/2e
(7) parent(node) = myParent
(8) err(node) = k
(9) if k = 0

(10) then lea fidx = node
(11) else
(12) lk = b(le f t · k)/(k + 1)c
(13) CreateTree(pi . . . pi+le f t·plen−1, lk, node, idx, plen)
(14) rk = b((k + 1 − le f t) · k)/(k + 1)c
(15) CreateTree(pi+le f t·plen . . . p j, rk, node, idx + le f t, plen)
(16) fi

Example: Find the pattern P = annual in the text T = annual CPM anniversary with at most k = 2 errors.
First we build the tree with k + 1 = 3 leaves. Below we write at each node ni the variables (f rom, to, error) .

"annual" n4=(1,6,2)

/ \

"annu" n3=(1,4,1) \

/ \ \

"an" n0=(1,2,0) "nu" n1=(3,4,0) "al" n2=(5,6,0)

| | |

leaf 0 leaf 1 leaf 2

Search: After constructing the tree, we have k + 1 leafs lea fi. The k + 1 subpatterns

{ p f rom(n), . . . , pto(n), n = lea fi, i ∈ {0, . . . , k} }

are sent as input to a multi-pattern search algorithm (e. g. Aho-Corasick, Wu-Manbers, or SBOM). This algorithm
gives as output a list of pairs (pos, i) where pos is the text position that matched and i is the number of the piece
that matched.

The PEX algorithm performs verifications on its way upward in the tree, checking the presence of longer
and longer pieces of the pattern, as specified by the nodes.

(1) Search phase of algorithm PEX
(2) for (pos, i) ∈ output of multi-pattern search do
(3) n = lea fi; in = f rom(n); n = parent(n);
(4) cand = true;

Fast filtering algorithms, by Knut Reinert, Clemens Gröpl, October 22, 2012, 11:13 4003

(5) while cand = true and n , nil do
(6) p1 = pos − (in − f rom(n)) − err(n);
(7) p2 = pos + (to(n) − in) + err(n);
(8) verify text tp1 . . . tp2 for pattern piece p f rom(n) . . . pto(n)
(9) allowing err(n) errors;

(10) if pattern piece was not found
(11) then cand = f alse;
(12) else n = parent(n);
(13) fi
(14) od
(15) if cand = true
(16) then report the positions where the whole p was found;
(17) fi
(18) od

We search for annual in annual CPM anniversary. We constructed the tree for annual. A multi-pattern
search algorithm finds: (1, 1), (12, 1), (3, 2), (5, 3). (Note that leaf i corresponds to pattern pi+1). For each of these
positions we do the hierarchical verification:

Initialization for (1,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=1-(1-1)-1=0; p2=1+(4-1)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=1-(1-1)-2=-1; p2=1+(6-1)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

Initialization for (3,2);

n=n1; in=3; n=n3; cand=true;

While loop;

a) p1=3-(3-1)-1=0; p2=3+(4-3)+1=5;

verify pattern annu in text annua with 1 error => found !

b) p1=3-(3-1)-2=-1; p2=3+(6-3)+2=8;

verify pattern annual in text annual_C => found !

c) report end positions (6,7,8)

Initialization for (12,1);

n=n0; in=1; n=n3; cand=true;

While loop;

a) p1=12-(1-1)-1=11; p2=12+(4-1)+1=16;

verify pattern annu in text _anniv with 1 error => found !

b) p1=12-(1-1)-2=10; p2=12+(6-1)+2=19;

verify pattern annual in text M_annivers => NOT found !

Note that sorting of the leaf matches would avoid verifying the match three times.

4.5 Summary

• Filtering algorithms prevent a large portion of the text from being looked at.

• The larger α = k/m, the less efficient filtering algorithms become.

• Filtering algorithms based on the pigeonhole principle need an exact, multi-pattern search algorithm and
a verification capable approximate string matching algorithm.

• The PEX algorithm starts verification from short exact matches and considers longer and longer substrings
of the pattern as the verification proceeds upward in the tree.

	Shift-And and Shift-Or
	Preprocessing
	Searching
	Shift-And Pseudocode
	Shift-And versus Shift-Or
	Shift-And Example
	Bit vector based approximate string matching
	The classical algorithm
	Computing the score in linear space
	Ukkonen's algorithm
	Pseudocode of Ukkonen's algorithm
	Running time of Ukkonen's algorithm
	Encoding and parallelizing the DP matrix
	Encoding the DP matrix
	Observations
	Resolving circular dependencies
	Computing D0
	Preprocessing the alphabet
	Myers' bit-vector algorithm
	The example
	Banded Myers' bit vector algorithm
	Preprocessing and Searching
	Edit distance

