2 NGS read mapping

This exposition has been developed by Knut Reinert. It is based on the following sources, which are all
recommended reading:

1. Li, H,and Homer, N. (2010) A survey of sequence alignment algorithms for next-generation sequencing. Briefings
in Bioinformatics 11 (5) (September 21): 473-483.

2. Holtgrewe, M., Emde A.-K., Weese D., Reinert K. (2011) A Novel And Well-Defined Benchmarking Method
For Second Generation Read Mapping. BMC Bioinformatics 12 (1): 210.

The term read mapping has itself established since a couple of years for another, well studied problem, namely
approximate string matching with certain application driven constraints.

The constraints are:

usually DNA (or RNA) is considered (which means a small alphabet size).

we have to map short strings (about 50 to 3000 bases) to a large string (billions of bases).

there are relatively few errors allowed (usually around 3-4%, some application might go up to 10%).

the problem sizes are very large (billions of small strings map to a string of size up to several billion
characters).

2.1 Second-generation sequencing technologies

454 FLX/Roche Solexa/lllumina SOLiD/ABI
Sequencing pyrophosphate bridge amplification ligation
approach release
Read lengths 400-500bp 36bp 35bp or 25bp (MP)
Mate pairs yes yes yes
Output/Run 400-600Mbp in 10h > 1.5Gbp in 2.5d 3-4Gbp in 6d
Accuracy homopolymer length nucleotide position nucleotide position

in the read

depends on (> 6 problematic) in the read

GS FLX Titanium
Series

The last slide was “old”.

Genome Analyzer 2

K

SOLiD System 2.0
Analyzer

INluminas HiSeq 2500 now produces at least 600 Gbp in about 12 days. That is about one billion reads, of length
100-150 bp in mate pairs. In addition, the end of higher throughput does not seem to be reached.

Also, new technologies allow the sequencing of single molecules.

What are the applications for which these technologies are currently used?
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2.2 Second-generation sequencing applications

Here are some of them:

Genome Assembly RNA-Sequencing Genome Comparison
Resequencing Expression Profiling SNPs
De novo assembly Alt. splicing  microRNA Rearrangements
Metagenomics Epigenetics
ChIP-Seq
DNA Methylation

2.3 RNA-Sequencing

ABAAA
How RNA-Seq works:

. . w S TN PPN
e RINA isolatation e

e Reverse transcription to cDNA

e Fragmentation

(Size selection)

e Sequencing

lllumina Solexa, Roche 454, or ABI SOLID
Graphic shown here is [llumina

RNA-Seq applications:

o Expression profiling: Quantify gene expression levels
o Alternative splicing: Which mRNAs are generated from the same gene?

e microRNA: Where is the genomic source, which genes are regulated?

The first two applications share the problem, that the NGS reads do not constitute genomic DNA. Because of
splicing, substrings of the read should occur consecutively on the genome divided by introns (or spliced out
exons). Hence the algorithmic problem changes.
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2.4 RNA-Seq - Alternative Splicing

b " Enhancers > Exon 1 Exon 2 Exon 3 Exond Exon 5
romoter DNA DRy < DIPDCP DRI P DD RGP D DD DAPDLPDIDIDERRT
d z 1 Exon 2 Exon 3 Exon4 Exon 5
DNA T Exon
l Transcription
l—/—\lternative Splicing —
Introns l
p & J \ 1 2 3 4 5 1 2 4 5 1 2 3 5
mRNA
pre-mRNA Exon Exon Exon Exon  Exon — —
l Splicingﬁ Translation Translation Translation
Open reading
5' UTR frame 3' UTR
mRNA —
l Translation
rotein m : ) )
pro Protein A Protein B Protein C

Two approaches to determine splice variants:

1. Cut the genome at known splice sites and map mRNA reads onto combinations of merged genome fragments
2. Map as many mRNA reads as possible onto the genome and use coverage and known introns to detect new splice
sites. Proceed as above.

Map reads to whole
= genome with Bowtie

N

Collect initially

appable reads
Second Approach”: AnmAppEie T
Assemble
consensus of
(] Map reads covered regions
e Assemble uniquely mapped reads ,
P Generate possible
. . iy splices between
o Generate possible splices gt ag ag pneighboring
exons
° -
Try to map the non-uniquely mapped reads onto splices Build sced table
index from
unmappable reads
Map reads to possible
gt ag ag splices via seed-and-
*Trapnell C, Pachter L, Salzberg SL. (2009) TopHat: discovering splice junc- extend

tions with RNA-Seq, Bioinformatics
Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The ITUM reads are indexed and aligned
to these splice junction sequences.
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Genome Assembly

RNA-Sequencing

Genome Comparison
Resequencing

Expression Profiling

SNPs
De novo assembly Alt. splicing  microRNA Rearrangements
Metagenomics Epigenetics
ChIP-Seq

DNA Methylation

2.5 Genome Comparison

e Sequence paired-end reads of an unknown genome (sample)

e Map them onto a known reference genome (target)

e Search for small mutations (SNPs) or large structural variations (rearrangements) between them

BREAKFOINT DETECTION WITH ILLUMINA PAIRED-END SEQUENCING
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Inversions, deletions, translocations can also be detected.!?

2.6 Other applications
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Metagenomics*

ChIP-Sequencing®
Fundamental to almost all of these applications is the following problem:

Problem 1 (Read Mapping Problem). Given a set of read sequences R, a reference sequence G, and a distance
k € N. Find all pairs (r, g) with r € R, g is substring of G and dist(r, g) < k.

Common distance measures are Hamming distance or (weighted) edit distance.
The pairs (r, g) are called matches of r.

However, depending on the application, we have to adapt the problem definition.

2.7 Objective functions

By now it should be clear to you, that the term read mapping subsumes a number of different objective
functions. In the normal case we want to find the approximate occurrences of a complete read, that is, conduct
a semi-global alignment.

If we have for example RNA reads, then the read may corresponds to several genomic loci that have been
spliced together. In this case we speak of split alignment to distinguish it from local alignment. In split
alignment we want to find the complete read, whereas this is not necessary in local alignment.

The problem of split alignment can be further subdivided depending on the decision whether we allow parts
of the split read to be reverse complemented (e.g. assembly error), be missing, or out of order (e.g. genomics
insertions or deletions).

Usually split read mapping is reduced to several subproblems of normal read mapping.

Finally, a distinction is made whether the approximate string matching supports (weighted) edit distance or
only the Hamming distance.

While the edit distance is preferable, it makes the problem computationally harder. Often you will find in read
mapping heuristics some ”in-between” formulations (e.g. supports mismatches and up to 2 insertions).

Be aware of such limitations.

1Korbel JO, Urban AE, Affourtit JP, et al. (2007) Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome, Science

2Bashir A, Volik S, Collins C, Bafna V, Raphael BJ. (2008) Evaluation of paired-end sequencing strategies for detection of genome rearrangements
in cancer, PLoS computational biology

“Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone
methylations in the human genome, Cell

4Poinar HN, Schuster SC, et al. (2006) Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA, Science
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If we have a fixed objective function for our special approximate string matching problem, we can still make
distinctions about the set of matches we want to find. A reasonable distinction could be the tasks of finding:

1. all matches with up to k errors.
2. all best matches.

3. any best match.

Doing this of course implies to have a good definition, what we actually mean with a match?

Have a look at the following situation:

2.8 Benchmarking

reference  CAGACTCCCAACTGTCA - - - CAGACTCCCCCCAACTG™
alignments TCCCAAC TCCC---AAC

* T-CCCAAC

*x TCCCAA-C

Different kind of approximate matches.

Say, we want to find the best two matches of the read in the reference sequence, with an edit distance of up to
3. Both locations in the reference sequence are shown. The row alignments shows two alignments of the read
to the reference sequence that appear to be optimal. However, the alignments in the rows below have a lower
edit distance than the right one.

Common sense would tell us that the alignments in the left column are not significantly different, though. Each
alignment with distance k induces alignments with distance at most k + 2 by aligning the leftmost/rightmost
base one more position to the left/right and introducing a gap.

Repeats are another issue. Consider the tandem repeats in the below figure.

reference ---CGACdCACCACGACCCACCACGACCCA(

CGACCCACCACGACCCACCA
CGACCCACCACGACCCAC

Large period repeat.

Intuitively, we can identify the two distinct alignments in this situation. Now look at a tandem repeat with a
shorter period:

— S A Y Y Y A /A /A

reference - - - CAACAACAACAACAACAACAACAACAA

CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA
CAACAACAACAA

Small period repeat.
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Do we really want to find all those alignments?

Counting alignments in this way would require a read mapper to find lots of positions in repeat regions. This
is not desirable since reads from long tandem repeat regions would get a higher weight with this counting
scheme than reads from short tandem repeat regions or reads from non-repeat regions.

Only weighting each found match with 1/n (where n is the number of positions the read aligns at) is also
deficient (why?).

Hence it is more desirable to define when two matches are considered the same and when they should be
counted separately.

Without giving the details, one can define an equivalence relation on the set of matches, which can be depicted
as follows as an error landscape.

distance

A 4

match end position

Error landscape.

Flooding this landscape to the respective error level gives a number of intervals, which in turn can be used to
define the specificity and sensitivity of read mappers. In the benchmark it is sufficient to return one endposition
within the interval.

Some of the intervals will be labelled optimal, if they contain a matching position with the minimal distance
(e.g. edit or hamming). If we benchmark read mapping application with the goal find any best, then it should
return an alignment ending in one of those intervals. If we have the goal find all best, the read mapper should
return all optimal intervals, etc.

This can now be used to make comprehensive comparisons between different methods to compare their
performance.

As an evaluation metric we use the number of normalized found intervals.

This is defined as follows: Each read gives at most one point. If a read matches at # locations (i.e. intervals),
each found location gives 1/n point. To get percentages, the number of achieved points is divided by the
number of reads and multiplied by 100.

Have a look at results of recent read mappers (2011) for the three different categories (Illumina reads of
Drosophila Melanogaster, 100 bp length), but mind that those plots do not give the run times.
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If read mappers are benchmarked, you should be aware whether a program is made or configured to find only
one (or a few) mapping locations, or whether it is made (or configured) to find all mapping locations.

In the first case we talk of a best mapper, in the second case we talk of an all mapper. Depending on the algorithms
and heuristics used, a program which is a good best mapper might not perform well as an all mapper, or vice
versa. Also, the run times might change significantly.

Some read mappers take quality values into account, either already in the filtering phase, or in the verification
phase. If a difference between reference genome and read is caused by a sequencing error, this strategy should
help in finding the correct location more often.

However, if the difference is caused by a real genomics difference (e.g. a SNP) the quality score does not help.

In the following I present you some benchmark results taking into account the classification of read mappers
into best and all mappers, the presented Rabema benchmark, and a benchmark using simulated SNPs.

The following table shows a current comparison of read mappers using the Rabema classes. The small numbers
show the percentages for 0%, 1%, 2 %, 3%, and 4% error rate.

method all all-best any-best recall
" Bowtie 2
5 BWA
;& Soap 2
g R3-100
g R3-95
- Bowtie 2
o BWA
&, Hobbes
& mrFAST
& SHRiMP2
" R3-100
R3-95

The following table shows a current comparison of read mappers and their run times on real data sets (10
million Illumina reads) (left) and simulated long reads (right).
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SRR497711 ERR012100 simulated, m = 800
dataset ;
D. melanogaster H. sapiens D. melanogaster
time  correctly mapped mapped reads time  correctly mapped mapped reads time  correctly mapped mapped reads

method [min:s] reads [%] [%] [min:s] reads [%] [%] [min:s] reads [%] [%]
, DBowtie2 2:00 85.71 i 7 me 5:37 96.72 7% ws s 13:48 99.99 o s 78
%& BWA 5:35 79.37 po ga my 1345 93.53 Jo m7 w0 5:38 68.09 a0 w0
& Soap2 1:55 72.49 70 som mis 2:34 89.73 7% i wn 0:54 38.14 0 m17 s
g R3-100 1:28 78.92 2 71 me 8556 92.99 7o 578 w067 1:17 90.43 o w1 7
2 R3-95 1:26 78.82 2 ou me 43:16 92.95 7o 57s o067 1:15 90.43 o w1 7
, Hobbes 4:51 76.16 22 siov 116 265:48 89.24 70 sz wor - -
g mrFAST 4:01 78.92 2 on B 413:40 92.99 7% s w06 5:16 69.32 00 B e
& SHRIMP2  23:40 89.91 207 7 mse 1312:09 99.06 70 57 0% 796:06 99.31 o o w67
E R3-100 1:51 78.92 20 7o me 118:26 92.99 7% 578 067 1:20 90.43 0 w1 7
= R3-9% 1:45 78.82 2 ou me 5813 92.95 7o 57s 067 1:20 90.43 0 w1

For single-end reads the table show the percentages of found origins (recall) and fraction of unique reads
mapped to their origin (precision) grouped by reads with s SNPs and 7 indels (s, 7).

In this table you can see that read mappers have a different behaviour depending on the kind of error they
encounter (SNPs vs sequencing error).

(0,0) (1,0) 2,0) (3,0) (4,0) (L1 12) 03) (0,4)
method prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl. prec. recl

Bowtie2
BWA
Soap 2
R3-100
R3-99
R3-95
Hobbes
mrFAST
SHRiMP 2
R3-100
R3-99
R3-95

best-mappers

all-mappers

2.9 Computational paradigms

Lets go back to algorithmic paradigms used in read mapping algorithms.

Given the large data, obviously all algorithms use some string indices to preprocess the reads, the genome, or
both. The indices can be used directly for searching as in the case of the enhanced suffix array or Burrows
Wheeler transform (BWT), or they are used to filter out regions that do not contain matches (as in the case of
(gapped) g-gram indices).

You have already encountered a simple filter that is based on a g-gram index and uses a simple version of the
g-gram lemma. This paradigm is called g-gram counting.

In the following lectures we will talk about a g-gram based pigeonhole filter and hierarchical verification
scheme introduced by Navarro and about a fast bit-vector based verification algorithm by Myers.



