2 NGS read mapping

This exposition has been developed by Knut Reinert. It is based on the following sources, which are all recommended reading:

- 1. Li, H, and Homer, N. (2010) *A survey of sequence alignment algorithms for next-generation sequencing*. Briefings in Bioinformatics 11 (5) (September 21): 473-483.
- 2. Holtgrewe, M., Emde A.-K., Weese D., Reinert K. (2011) *A Novel And Well-Defined Benchmarking Method For Second Generation Read Mapping.* BMC Bioinformatics 12 (1): 210.

The term *read mapping* has itself established since a couple of years for another, well studied problem, namely *approximate string matching* with certain application driven constraints.

The constraints are:

- usually DNA (or RNA) is considered (which means a *small alphabet* size).
- we have to map *short* strings (about 50 to 3000 bases) to a large string (billions of bases).
- there are relatively *few errors* allowed (usually around 3-4%, some application might go up to 10%).
- the problem sizes are very large (*billions* of small strings map to a string of size up to several billion characters).

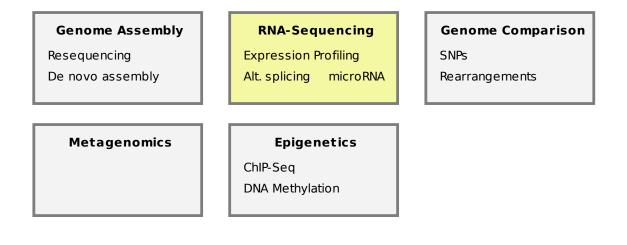
2.1 Second-generation sequencing technologies

	454 FLX/Roche	Solexa/Illumina	SOLiD/ABI			
Sequencing approach	pyrophosphate release	bridge amplification	ligation			
Read lengths	400–500bp	36bp	35bp or 25bp (MP)			
Mate pairs	yes	yes	yes			
Output/Run	400–600Mbp in 10h	$> 1.5 { m Gbp}$ in 2.5d	3–4Gbp in 6d			
Accuracy depends on	homopolymer length (> 6 problematic)	nucleotide position in the read	nucleotide position in the read			

Genome Analyzer 2

SOLiD System 2.0 Analyzer

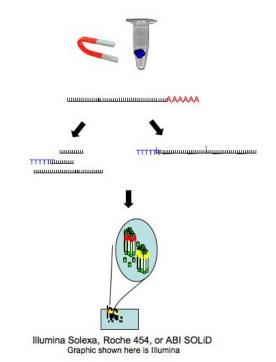
The last slide was "old".


Illuminas HiSeq 2500 now produces at least 600 Gbp in about 12 days. That is about one billion reads, of length 100-150 bp in mate pairs. In addition, the end of higher throughput does not seem to be reached.

Also, new technologies allow the sequencing of *single molecules*.

What are the applications for which these technologies are currently used?

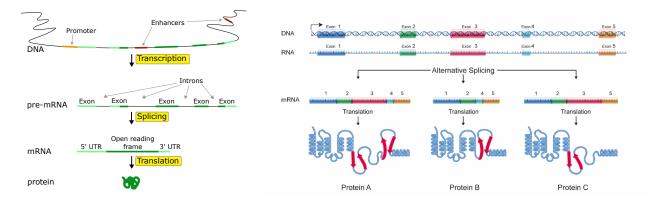
2.2 Second-generation sequencing applications


Here are some of them:

2.3 RNA-Sequencing

How RNA-Seq works:

- RNA isolatation
- Reverse transcription to cDNA
- Fragmentation
- (Size selection)
- Sequencing

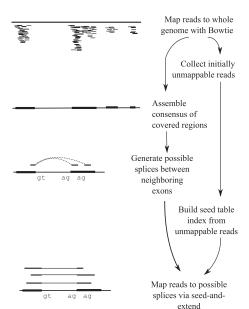


RNA-Seq applications:

- Expression profiling: Quantify gene expression levels
- Alternative splicing: Which mRNAs are generated from the same gene?
- microRNA: Where is the genomic source, which genes are regulated?

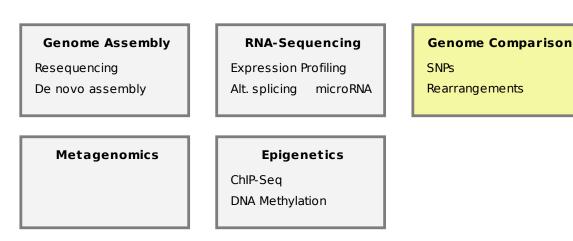
The first two applications share the problem, that the NGS reads does not constitute genomic DNA. Because of splicing, substrings of the read should occur consecutively on the genome divided by introns (or spliced out exons). Hence the algorithmic problem changes.

2.4 RNA-Seq - Alternative Splicing



Two approaches to determine splice variants:

- 1. Cut the genome at known splice sites and map mRNA reads onto combinations of merged genome fragments
- 2. Map as many mRNA reads as possible onto the genome and use coverage and known introns to detect new splice sites. Proceed as above.


Second Approach^a:

- Map reads
- Assemble uniquely mapped reads
- Generate possible splices
- Try to map the non-uniquely mapped reads onto splices

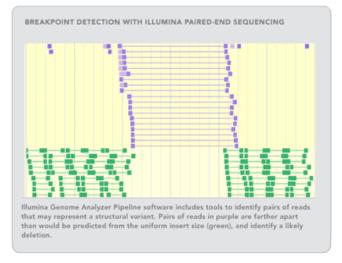
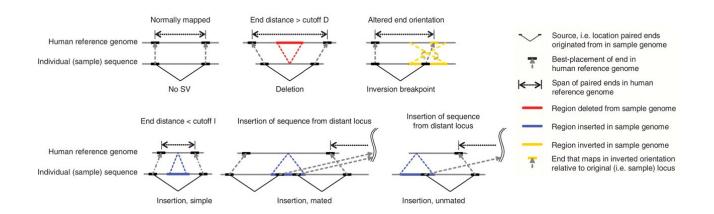
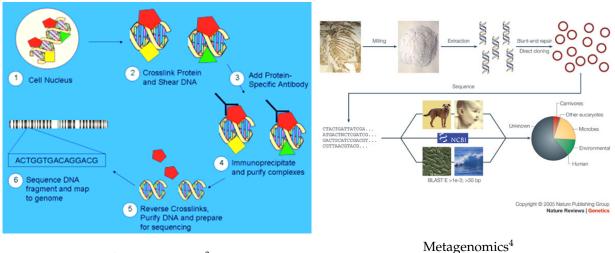

^aTrapnell C, Pachter L, Salzberg SL. (2009) *TopHat: discovering splice junctions with RNA-Seq*, Bioinformatics

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole reference genome, and those reads that do not map are set aside. An initial consensus of mapped regions is computed by Maq. Sequences flanking potential donor/acceptor splice sites within neighboring regions are joined to form potential splice junctions. The IUM reads are indexed and aligned to these splice junction sequences.



2.5 Genome Comparison

- Sequence paired-end reads of an unknown genome (sample)
- Map them onto a known reference genome (target)
- Search for small mutations (SNPs) or large structural variations (rearrangements) between them



A deletion in the sample induces pairs of reads to be farther apart than predicted.

Inversions, deletions, translocations can also be detected.¹²

2.6 Other applications

ChIP-Sequencing³

Fundamental to almost all of these applications is the following problem:

Problem 1 (**Read Mapping Problem**). Given a set of read sequences \mathcal{R} , a reference sequence G, and a distance $k \in \mathbb{N}$. Find all pairs (r, g) with $r \in \mathcal{R}$, g is substring of G and dist $(r, g) \le k$.

Common distance measures are Hamming distance or edit distance. The pairs (r, g) are called **matches** of *r*.

However, depending on the application, we have to adapt the problem definition.

2.7 Objective functions

By now it should be clear to you, that the term read mapping subsumes a number of different objective functions. In the normal case we want to find the approximate occurrences of a complete read, that is, conduct a *semi-global* alignment.

If we have for example RNA reads, then the read may corresponds to several genomic loci that have been spliced together. In this case we speak of *split* alignment to distinguish it from local alignment. In split alignment we want to find the *complete* read, whereas this is not necessary in local alignment.

The problem of split alignment can be further subdivided depending on the decision whether we allow parts of the split read to be reverse complemented (e.g. assembly error), be missing, or out of order (e.g. genomics insertions or deletions).

Usually split read mapping is reduced to several subproblems of normal read mapping.

Finally, a distinction is made whether the approximate string matching supports (weighted) edit distance or only the Hamming distance.

While the edit distance is preferable, it makes the problem computationally harder. Often you will find in read mapping heuristics some "in-between" formulations (e.g. *supports mismatches and up to 2 insertions*).

Be aware of such limitations.

¹Korbel JO, Urban AE, Affourtit JP, et al. (2007) Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome, Science ²Bashir A, Volik S, Collins C, Bafna V, Raphael BJ. (2008) Evaluation of paired-end sequencing strategies for detection of genome rearrangements in cancer, PLoS computational biology

⁴Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) *High-resolution profiling of histone methylations in the human genome*, Cell

⁴Poinar HN, Schuster SC, et al. (2006) Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA, Science

If we have a fixed objective function for our special approximate string matching problem, we can still make distinctions about the set of matches we want to find. A reasonable distinction could be the tasks of finding:

- 1. *all* matches with up to *k* errors.
- 2. all best matches.
- 3. any best match.

Doing this of course implies to have a good definition, what we actually mean with a match? Have a look at the following situation:

2.8 Benchmarking

reference	CAGACTCCCAACTGTCA · · ·	CAGACTCCCCCAACTG
alignments	ΤСССААС	ТСССААС
*	T - C C C A A C	
**	TCCCAA-C	
	Different kind of approximate match	es.

Say, we want to find the best two matches of the read in the reference sequence, with an edit distance of up to 3. Both locations in the reference sequence are shown. The row alignments shows two alignments of the read to the reference sequence that appear to be optimal. However, the alignments in the rows below have a lower edit distance than the right one.

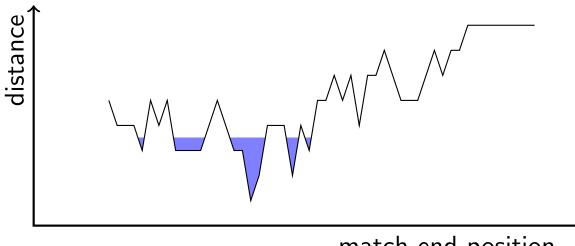
Common sense would tell us that the alignments in the left column are not significantly different, though. Each alignment with distance k induces alignments with distance at most k + 2 by aligning the leftmost/rightmost base one more position to the left/right and introducing a gap.

Repeats are another issue. Consider the tandem repeats in the below figure.

reference · · · Ć Ġ A C C C A C C À Ć Ġ A C C C A C C À Ć Ġ A C C C A C C À Ć Ġ A C C C A C C C A C C

Large period repeat.

Intuitively, we can identify the two distinct alignments in this situation. Now look at a tandem repeat with a shorter period:


Do we really want to find all those alignments?

Counting alignments in this way would require a read mapper to find lots of positions in repeat regions. This is not desirable since reads from long tandem repeat regions would get a higher weight with this counting scheme than reads from short tandem repeat regions or reads from non-repeat regions.

Only weighting each found match with 1/n (where n is the number of positions the read aligns at) is also deficient (why?).

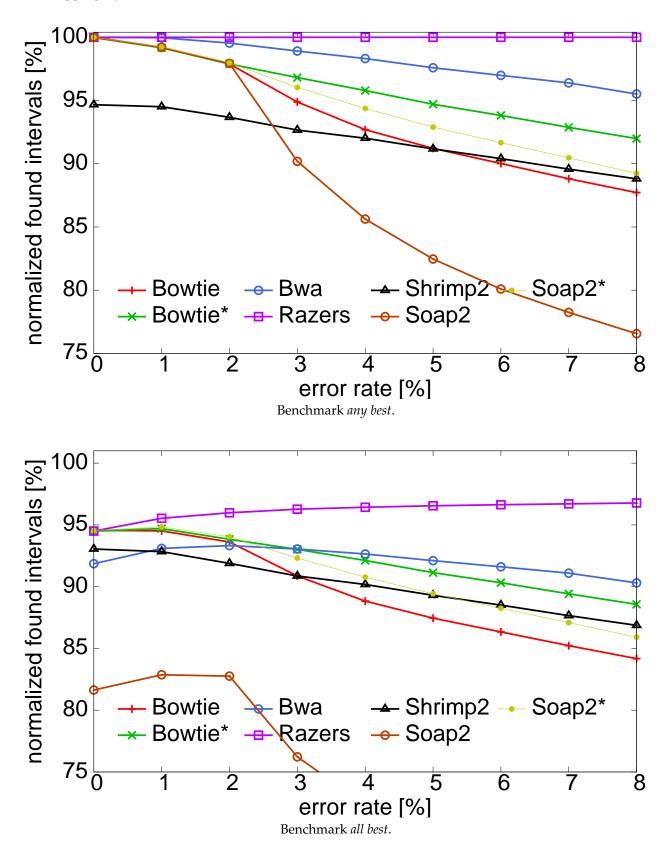
Hence it is more desirable to define when two matches are considered the same and when they should be counted separately.

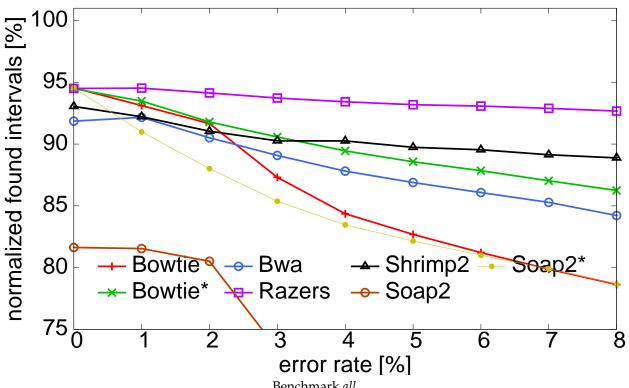
Without giving the details, one can define an equivalence relation on the set of matches, which can be depicted as follows as an *error landscape*.

match end position

Error landscape.

Flooding this landscape to the respective error level gives a number of intervals, which in turn can be used to define the specificity and sensitivity of read mappers. In the benchmark it is sufficient to return one endposition within the interval.


Some of the intervals will be labelled *optimal*, if they contain a matching position with the minimal distance (e.g. edit or hamming). If we benchmark read mapping application with the goal *find any best*, then it should return an alignment ending in one of those intervals. If we have the goal *find all best*, the read mapper should return all optimal intervals, etc.


This can now be used to make comprehensive comparisons between different methods to compare their performance.

As an evaluation metric we use the number of *normalized found intervals*.

This is defined as follows: Each read gives at most one point. If a read matches at n locations (i.e. intervals), each found location gives 1/n point. To get percentages, the number of achieved points is divided by the number of reads and multiplied by 100.

Have a look at results of recent read mappers (2011) for the three different categories (Illumina reads of *Drosophila Melanogaster*, 100 bp length), but mind that those plots do not give the run times.

Benchmark all.

If read mappers are benchmarked, you should be aware whether a program is made or configured to find only one (or a few) mapping locations, or whether it is made (or configured) to find *all* mapping locations.

In the first case we talk of a *best mapper*, in the second case we talk of an *all mapper*. Depending on the algorithms and heuristics used, a program which is a good best mapper might not perform well as an all mapper, or vice versa. Also, the run times might change significantly.

Some read mappers talk quality values into account, either already in the filtering phase, or in the verification phase. If a difference between reference genome and read is caused by a sequencing error, this strategy should help in finding the correct location more often.

However, if the difference is caused by a real genomics difference (e.g. a SNP) the quality score does not help.

In the following I present you some benchmark results taking into account the classification of read mappers into best and all mappers, the presented Rabema benchmark, and a benchmark using simulated SNPs.

The following table shows a current comparison of read mappers using the Rabema classes. The small numbers show the percentages for 0%, 1%, 2%, 3%, and 4% error rate.

	method	all	all-best	any-best	recall			
	Bowtie 2	92.04 99.18 98.72 96.80 93.44 81.94 40.19	96.16 97.79 97.85 95.80 94.83 93.37 88.86	98.08 100.00 99.96 97.55 96.62 94.93 90.46	95.94 98.01 97.72 95.55 94.24 92.79 89.52			
ers	BWA	92.18 99.18 98.72 97.81 94.25 80.92 37.65	96.81 97.79 97.87 97.88 96.59 92.63 83.47	98.81 100.00 99.95 99.81 98.55 94.28 85.37	96.41 97.93 97.69 97.25 95.77 91.98 84.61			
ddu	Soap 2	65.93 99.18 95.55 91.34 8.67 0.70 0.00	69.89 97.79 94.74 91.37 8.98 0.79 0.00	71.37 100.00 96.78 93.18 9.21 0.81 0.00	69.91 98.05 94.62 91.20 11.85 1.41 0.36			
-m	R3-100	93.30 99.18 98.73 97.93 95.60 85.81 44.15	97.96 97.79 97.88 98.03 98.00 98.27 97.93	$100.00 \begin{array}{c} {}^{100.00 \ 100$	97.80 98.00 97.85 97.75 97.65 97.70 97.69			
best-mappers	R3-95	93.10 99.18 98.73 97.93 95.49 84.76 42.82	97.75 97.79 97.88 98.03 97.88 97.03 94.97	99.79 100.00 100.00 100.00 99.89 98.74 97.00	97.60 98.03 97.85 97.74 97.52 96.56 94.99			
<u> </u>	Bowtie 2	95.69 99.98 99.91 99.45 97.99 90.69 55.14	98.85 99.74 99.79 98.61 98.21 97.55 93.84	99.16 100.00 99.98 99.01 98.63 97.94 94.17	98.54 99.74 99.58 98.27 97.64 96.87 94.40			
-mappers	BWA	95.89 99.96 99.88 99.49 97.13 87.79 64.11	97.98 98.81 99.01 99.02 97.83 93.95 85.20	98.82 100.00 99.95 99.82 98.56 94.34 85.37	97.80 99.03 98.96 98.75 97.35 93.43 86.36			
	Hobbes	96.56 99.41 99.00 98.76 97.80 93.20 73.05	97.08 97.23 96.59 97.01 97.38 98.16 97.42	98.01 97.92 97.51 97.96 98.43 99.12 98.46	96.41 95.49 95.84 96.54 97.03 97.98 97.79			
lap	mrFAST	99.97 100.00 100.00 100.00 100.00 100.00 99.99 99.53	$99.97 \begin{array}{c} {}^{100.00} {}^{100.00} {}^{100.00} {}^{100.00} \\ {}^{100.00} {}^{100.00} {}^{99.10} \end{array}$	99.97 100.00 100.00 100.00 100.00 100.00 99.13	99.97 100.00 100.00 100.00 99.99 100.00 99.18			
l-m	SHRiMP 2	96.53 99.87 99.82 99.53 98.37 92.58 64.63	99.50 99.34 99.50 99.60 99.64 99.65 98.32	99.85 99.87 99.90 99.91 99.89 99.84 98.57	99.25 99.35 99.30 99.24 99.30 99.09 98.48			
all	R3-100	$100.00 \begin{array}{c} {}^{100.00} \\ {}^{100.00} \begin{array}{c} {}^{100.00} \begin{array}{c} {}^{100.00} \end{array} \\ {}^{100.00} \begin{array}{c} {}^{100.00} \end{array} \\ {}^{100.00} \end{array}$	$100.00 \begin{array}{c} {}^{100.00 \ 100$	$100.00 \begin{array}{c} {}^{100.00 \ 100$	$\underset{100.00}{100.00} \begin{array}{c} {}_{100.00} \begin{array}{c} {}_{100.00} \begin{array}{c} {}_{100.00} \end{array} \begin{array}{c} {}_{100.00} \end{array}$			
	R3-95	$99.54 \begin{array}{c} {}^{100.00} {}^{100.00} {}^{100.00} {}^{100.00} \\ {}^{99.89} {}^{98.67} {}^{95.11} \end{array}$	$99.79 \begin{array}{c} {}^{100.00} {}^{100.00} {}^{100.00} {}^{100.00} \\ {}^{99.89} {}^{98.71} {}^{96.96} \end{array}$	$99.79 \begin{array}{c} {}^{100.00} {}^{100.00} {}^{100.00} {}^{100.00} \\ {}^{99.89} {}^{98.74} {}^{97.00} \end{array}$	99.79 100.00 100.00 100.00 99.89 98.77 97.17			

The following table shows a current comparison of read mappers and their run times on real data sets (left) and simulated long reads (right).

	dataset		SRR497711 D. melanogas			ERR012100 H. sapiens		simulated, $m = 800$ D. melanogaster			
	method	time [min:s]	correctly mapped reads [%]	mapped reads [%]	time [min:s]	correctly mapped reads [%]	mapped reads [%]	time [min:s]	correctly mapped reads [%]	mapped reads [%]	
	Bowtie 2	2:00	99.65 100.00 99.77 99.02 97.65 94.92	85.71 52.08 67.27 73.62	5:37	99.62 100.00 99.75 96.02	96.72 75.99 87.81 90.54	13:48	96.73 97.47 99.67 98.05	99.99 0.03 41.07 73.95 82.31 90.03	
ers	BWA	5:35	98.96 100.00 99.57 98.40 90.72 82.08	79.37 52.08 67.24 73.57 76.62 78.31	13:45	99.66 100.00 99.50 98.01 93.39 88.92	93.53 75.99 87.78 90.59	5:38	74.96 97.47 98.62 82.47	68.09 0.03 40.61 68.09 68.09 68.09	
app	Soap 2	1:55	91.78 100.00 96.24 89.35	72.49 52.08 66.73 72.48	2:34	96.45 100.00 94.94 86.54	89.73 75.99 87.24 89.73	0:54	41.21 97.47 67.99 28.10	38.14 0.03 28.17 37.88 38.14 38.14	
ų.	R3-100	1:28	100.00 100.00 100.00 100.00 100.00	78.92 52.08 67.31 73.69	85:56	100.00 100.00 100.00 100.00 100.00	92.99 75.99 87.84 90.67 92.02 92.99	1:17	100.00 100.00 100.00 100.00 100.00	90.43 0.03 41.13 74.13 82.65 90.43	
est	R3-95	1:26	99.87 100.00 100.00 100.00 99.11 96.34	78.82 52.08 67.31 73.69 76.94 78.82	43:16	99.96 100.00 100.00 100.00 99.30 96.92	92.95 75.99 87.84 90.67 92.01 92.95	1:15	$100.00 \begin{array}{c} {}^{100.00 \ 100$	$90.43 \begin{smallmatrix} 0.03 & 41.13 & 74.13 \\ 82.65 & 90.43 \end{smallmatrix}$	
	Hobbes	4:51	96.49 96.55 96.46 96.94 96.28 93.86	76.16 50.28 64.98 71.16 74.33 76.16	265:48	95.97 95.94 96.14 96.39 96.10 94.63	89.24 72.90 84.30 87.02	-	-	-	
ers	mrFAST	4:01	100.00 100.00 100.00 100.00 100.00	78.92 52.08 67.31 73.69	413:40	100.00 100.00 100.00 100.00 100.00	92.99 75.99 87.84 90.67	5:16	65.25 93.14 95.65 59.59	69.32 0.03 39.34 69.32 69.32 69.32	
dd	SHRiMP 2	23:40	99.83 99.99 99.99 99.74 98.71 96.33	89.91 52.07 67.30 73.66	1312:09	99.81 99.89 99.83 99.39 98.29 96.81	99.06 75.90 87.74 90.56 91.91 92.87	796:06	95.70 97.47 99.75 97.60 82.95 80.14	99.31 0.03 41.04 73.67 81.63 89.14	
-ue	R3-100	1:51	100.00 100.00 100.00 100.00 100.00	78.92 52.08 67.31 73.69	118:26	100.00 100.00 100.00 100.00 100.00	92.99 75.99 87.84 90.67 92.02 92.99	1:20	100.00 100.00 100.00 100.00 100.00 100.00	90.43 0.03 41.13 74.13 82.65 90.43	
all-	R3-95	1:45	99.87 100.00 100.00 100.00 99.11 96.34	78.82 ^{52.08} _{76.94} ^{67.31} ^{73.69}	58:13	99.96 100.00 100.00 100.00 99.30 96.92	92.95 75.99 87.84 90.67 92.01 92.95	1:20	100.00 100.00 100.00 100.00 100.00	$90.43 \begin{smallmatrix} 0.03 & 41.13 & 74.13 \\ 82.65 & 90.43 \end{smallmatrix}$	

For single-end reads the table show the percentages of found origins (recall) and fraction of unique reads mapped to their origin (precision) grouped by reads with *s* SNPs and *i* indels (*s*, *i*).

In this table you can see that read mappers have a different behaviour depending on the kind of error they encounter (SNPs vs sequencing error).

		(0,	0)	(1,	.0)	(2,	.0)	(3	,0)	(4,	.0)	(1,	.1)	(1,	2)	(0,	.3)	(0,	,4)
	method	prec.	recl.																
Ś	Bowtie 2	97.6	97.3	95.6	94.8	94.6	92.0	93.3	88.7	92.6	82.5	95.3	93.3	93.5	92.3	96.1	95.4	97.6	97.4
per	BWA	98.2	97.9	97.1	96.4	97.6	95.3	96.5	90.2	94.9	85.1	97.4	90.9	97.1	80.3	96.3	66.5	97.5	67.1
appei	Soap 2	98.1	82.9	97.0	63.6	97.4	31.0	0.0	0.0	0.0	0.0	90.6	6.2	0.0	0.0	0.0	0.0	0.0	0.0
Ę	R3-100	98.4	98.4	97.7	97.7	98.2	98.2	97.5	97.5	96.3	96.3	98.1	98.1	97.9	97.9	97.6	97.6	98.4	98.4
est	R3-99	98.4	98.4	97.7	97.7	98.2	98.0	97.4	96.6	96.2	95.1	98.2	98.1	97.9	97.9	97.6	97.6	98.4	98.4
Ā	R3-95	98.4	98.3	97.7	97.5	98.2	97.3	97.5	94.9	96.1	91.7	98.2	97.6	97.9	97.6	97.5	97.5	98.4	98.4
	Hobbes	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	100.0	100.0	100.0	99.8	100.0	93.6	99.6	90.5	99.6	87.6
ers	mrFAST	100.0	99.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.3
dd	SHRiMP 2	100.0	99.4	100.0	99.5	100.0	99.7	100.0	99.9	100.0	99.7	100.0	99.5	100.0	99.2	100.0	99.6	100.0	99.6
ma	R3-100	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
-lle	R3-99	100.0	100.0	100.0	99.9	100.0	99.8	100.0	99.1	100.0	98.9	100.0	99.9	100.0	100.0	100.0	100.0	100.0	100.0
10	R3-95	100.0	99.9	100.0	99.7	100.0	99.0	100.0	97.3	100.0	95.4	100.0	99.4	100.0	99.6	100.0	99.9	100.0	100.0

2.9 Computational paradigms

Lets go back to algorithmic paradigms used in read mapping algorithms.

Given the large data, obviously all algorithms use some *string indices* to preprocess the reads, the genome, or both. The indices can be used directly for searching as in the case of the enhanced suffix array or Burrows Wheeler transform (BWT), or they are used to filter out regions that do not contain matches (as in the case of (gapped) q-gram indices).

You have already encountered a simple filter that is based on a q-gram index and uses a simple version of the q-gram lemma. This paradigm is called *q-gram counting*.

First, we will talk about q-gram pigeonhole filter and a hierarchical verification scheme introduced by Navarro and in addition introduce a fast edit-distance based verification.