
Genomics
Freie Universität Berlin, Institut für Informatik
Knut Reinert, Peter Robinson, Sebastian Bauer

Wintersemester 2012/2013

2. Übungsblatt vom 23. Oktober 2012
Diskussion am 1. November 2012

Exercise 1.

a) Write up the definition of the hamming distane and edit distance. For the edit distance, consider
only insert, delete, and replace operations. Each operation has an cost of one.

b) Determine the hamming distances and the edit distance between following pairs of strings.

TGGTACTTCTC TGGTGGTGG TAGGTGGTG

TAGTTCTTCTT TGGTGGTGG TGGTGGTGG

c) Write a function, method, or programm in a programming language of your choice to determine
the edit distance between two given text strings. Test it with the examples of b)

Exercise 2.

a) What is the purpose of read mapping in a next generation sequencing workflow? Which con-
traints make it special from more general approximate string matching problems?

b) Give a formal definition of the read mapping problem.

c) Solve the following read mapping problem instances. The distance function is the edit distance.
All reads are of good quality. Write down all matches with a distance not greater than 2.

Reference: TGGTACTTCTCCTACCCCCCA

Read #1: TACTT

Read #2: CTTTC

Read #3: TCCTC

Read #4: CCGCC

d) This is optional. Think about how a simple read mapper could be implemented, for instance,
by reusing the result of 1b). The input to the function could be a reference sequence, a read, a
constant k and a distance function. The output should contain locations of the reference sequence
where the read matches with a distance not greater than k. There is no need to take efficiency
considerations into account. Implement it as a testable function/method in one of your favourite
programming languages. Show the correctness of your implementation by comparing it with the
result of c).



Exercise 3.

To make yourself familar with various read mappers, you should reproduce the Rabema bench-
mark that was partly introducted within the lecture. Instructions how to get benchmark suite
running are available from http://www.seqan.de/projects/rabema/. Especially interesting is to
go through ”For the Impatient” and the Rabema Manual. It is suggested to consider at least two
read mappers. Widely used read mappers are for instance:

• Bowtie 2 from http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

• BWA from http://bio-bwa.sourceforge.net/bwa.shtml

• Mosaik from http://code.google.com/p/mosaik-aligner/

• RazerS from http://www.seqan.de/projects/razers/

The first solution to this assignment is a script in one of your favourite scripting language (bash,
Python, Perl, etc.) or a makefile that can be used to run the benchmark. It is assumed that all
necessary tools are available from the command line path. As a reference sequence, you can use
the one supplied with Rabema. Other than that, the script should be system-independent (i.e.,
don’t use any path that is specific to your system).

The second solution to this assignment is the result of running the benchmark.

http://www.seqan.de/projects/rabema/
http://www.seqan.de/projects/rabema/manual/#toc-using-rabema-in-normal-mode
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://code.google.com/p/mosaik-aligner/
http://www.seqan.de/projects/razers/

