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Today’s Lecture

Variant calling is one of the key challenges in many areas of ge-
nomics research and diagnostics. Having aligned the fragments
of one or more individuals to a reference genome, SNP calling
identifies variable sites, whereas genotype calling determines
the genotype for each individual at each site.

Review: SNPs and SNVs, variant annotation

Introduction to variant calling: pileups

Review of Bayesian concepts we will need for more
advanced variants callinig algorithms and other topics in
this course
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SNPs and SNVs

SNP: Single-nucleotide
polymorphism. A variant
that is polymorphic within
a population

SNV: Single-nucleotide
variant: A variant called in
an individual sequence

(However, SNP and SNV
often are used
interchangeably)

Wikipedia
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Finding the needle . . .

X-ome Exome Genome

SNVs 800–1200 30,000-40,000 3–4 Mio.

¬ dbSNP 100–300 1,000–3,000 100K–300K

Indels (<10bp) 100–200 3,000 600K

¬ dbSNP 50 1,500 150K

Very approximate numbers of SNVs and other variants
detected by exome/genome sequencing
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Germline Mutations in Human Genetics

Fibrodysplasia Ossificans
Progressiva

Spontaneous or
trauma-induced
ossification of soft tissue
(muscle, tendon, ligament)

Caused by a specific point
mutation in the BMP type
I receptor ACVR1,
(c.617G>A; p.R206H)
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Somatic Mutations in Cancer

The Cancer Genome Atlas Research Network.

Nature 2008; 455:1061–1068

ERBB2 somatic mutations in glioblastoma tumours.

Somatic mutations in ERBB2, NF1, and other genes
contribute to the development of glioblastoma
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Mutations

I am going to assume you know what the major classes of
mutation are: missense, nonsense, insertion, deletion, splice-
site mutation. We will now review the mutation nomenclature
briefly.

DNA: A,C,G,T

c.435C>A

Protein: 1- or 3-letter code

p.A212P, Ala212Pro

HGNC1 gene symbols should be used, e.g., FBN1 for
Fibrillin-1

Nice Tool for checking mutation nomenclature:
http://www.humgen.nl/mutalyzer/

1HUGO Gene Nomenclature Committee

http://www.humgen.nl/mutalyzer/
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Human Genome Variation Society (HGVS)
Mutation Nomenclature

DNA . . .

Simple subsitution c.123A>G

Deletion c.123delA

Duplication c.123dupA

Insertion c.123 124insC
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Deletionen & Insertionen

c.546delT

c.546del

c.586 591del

c.586 591delTGGTCA or c.586 591del6

c.546 547insT (Not c.546insT, since this would be
ambiguous)

c.1086 1087insGCGTGA
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Alleles

To denote changes in two alleles (e.g., with recessive
disease):

[. . .], +

c.[546C>T]+[2398delT]
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Frameshift

Short form p.Arg83fs

Alternative: p.Arg83SerfsX15

First amino-acid subsitution (Arg83Ser)
Length of the shifted reading frame until premature stop
codon (X15)
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Numbering

Splice mutations: z.B. 36+1G>C, 37-2A>G
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Simple approaches to variant calling

samtools to sort, index, subset, and display BAM file
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Pileups

Pileup format facilitates SNP/indel calling and brief
alignment viewing by eyes.

Each line consists of chromosome, 1-based coordinate,
reference base, the number of reads covering the site, read
bases and base qualities.

...

21 31587791 T 24 .,..,,.,,......,..,..,,^], ?EFGDDEEEFEFFEEFDD?EE=>;

21 31587792 G 25 .,..,,.,,......,..,..,,,^], BCHI9H89IJ7IF78G8I:9I::::

21 31587793 A 26 .,..g,Gg,.G..GG,G.gG.,,g,^], 8G=B6F56GC4BC45I5B76BA?8AA

21 31587794 G 27 .$,$..,,.,,......,..,..,,,,,^], <D?F9G89GH7HC78F8H:9EC@>BBB

21 31587795 T 26 ..,,.,,......,..,..,,,,,,^]. ;CEECDEAB@A@AD=@FBC@@>>=>B

...

a dot: match to the reference base on the forward strand

a comma: match on the reverse strand

‘ACGTN’: for a mismatch on the forward strand

‘acgtn’: for a mismatch on the reverse strand.
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Pileups

21 31587794 G 27 .$,$..,,.,,......,..,..,,,,,^], <D?F9G89GH7HC78F8H:9EC@>BBB

^: marks the start of a read segment

The ASCII of the character following ^ minus 33 gives the
mapping quality.

A symbol $ marks the end of a read segment.

For example, the two $ symbols state that there are two
reads whose last base is position 31587794 with the last
base being ’.’, or “G”

For example, the ^], means that there is a read whose
first base is ’,’ (match on reverse strand), with mapping
quality ], or 93 minus 33, i.e., 60.
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Simple approaches to variant calling

21 31587794 G 27 .$,$..,,.,,......,..,..,,,,,^], <D?F9G89GH7HC78F8H:9EC@>BBB

Examine the column next to the column with the “G” variants to see the
reads corresponding to two $ symbols and one ] symbol
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Simple approaches to variant calling

Let us now consider position 31587793

21 31587793 A 26 .,..g,Gg,.G..GG,G.gG.,,g,^], 8G=B6F56GC4BC45I5B76BA?8AA

This position is covered by a total of 26 reads. 16 reads
favor the reference A, and 10 reads favor an alternate
base, G

Intuitively, this seems likely to be a heterozygous variant
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Simple approaches to variant calling

Koboldt DC et al. (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by

exome sequencing. Genome Res 22:568-76.

Let us now examine a heuristic, pileup-based approach
towards variant calling implemented by the varscan2
algorithm.
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Simple approaches to variant calling: Varscan
2

Varscan 2 begins with pileup files generatzed for a tumor
sample and matched normal control

A variant detected only in the tumor sample and not in the matched blood

sample from the same patient represents a somatic mutation; although

many somatic mutations in tumors are “passengers”, some are related to

the development of cancer, such as the ERBB2 mutations shown earlier.

Goal: Find mutations specific to the cancer tissue
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Simple approaches to variant calling: Varscan
2

The following steps are performed for each position of
genome in parallel for the tumor sample and the matched
normal sample

1 Determine if both samples meet the minimum coverage
requirement (by default, three reads with base quality
≥ 20)

2 Determine a genotype for each sample individually based
upon the read bases observed. By default, a variant allele
must be supported by at least two independent reads and
at least 8% of all reads.

3 Variants are called homozygous if supported by 75% or
more of all reads at a position; otherwise they are called
heterozygous.
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Simple approaches to variant calling: Varscan
2

If the genotypes do not match, then their read counts are
evaluated by one-tailed Fisher’s exact test in a two-by-two table

reference alternate
Tumor reads Tumor reads 1 Tumor reads 2

Normal reads Normal reads 1 Normal reads 2

Fisher exact test is performed. If the P value is significant
then

if the normal sample is called reference and the tumor
sample is called alternate, then the variant is called
somatic

We will practice this in the exercise
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If it seemed so easy...

Pabinger S et al., A survey of tools for variant analysis of next-generation genome sequencing data. Brief

Bioinform. 2013, early access

Intersection of variants called by different programs.
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If it seemed so easy...

Variant calling remains difficult, programs disagree, potentially
affecting all downstream analyses

Reasons for seeing a mismatch in a pileup include..

True variant

Error from library prep

misalignment (mapping error)

error in reference sequence

In addition to this, the meager overlapp in the results of the
alignment programs suggests that at least n − 1 (and probably
all) alignment programs produce partially erroneous variant
calls.
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Estimating Parameters from Data

In the rest of this lecture, we will review some key concepts of
Bayesian statistics that we will need to understand some of the
sophisticated variant calling algorithms (and much else in this
course). Next time we will look at some of the algorithms in
GATK, probably the best current variant caller, in more detail.
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Estimating Parameters from Data

In many situations in bioinformatics, we want to estimate “op-
timal” parameters from data. In the examples we have seen in
the lectures on variant calling, these parameters might be the
error rate for reads, the proportion of a certain genotype, the
proportion of nonreference bases etc. However, the hello world
example for this sort of thing is the coin toss, so we will start
with that.
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Coin toss

Let’s say we have two coins that are each tossed 10 times

Coin 1: H,T,T,H,H,H,T,H,T,T

Coin 2: T,T,T,H,T,T,T,H,T,T

Intuitively, we might guess that coin one is a fair coin, i.e.,
P(X = H) = 0.5, and that coin 2 is biased, i.e.,
P(X = H) 6= 0.5
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Discrete Random Variable

Let us begin to formalize this. We model the coin toss process
as follows.

The outcome of a single coin toss is a random variable X
that can take on values in a set X = {x1, x2, . . . , xn}
In our example, of course, n = 2, and the values are
x1 = 0 (tails) and x2 = 1 (heads)

We then have a probability mass function p : X −→ [0, 1];
the law of total probability states that

∑
x∈X p(xi ) = 1

This is a Bernoulli distribution with parameter µ:

p(X = 1;µ) = µ (1)
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Probability of sequence of events

In general, for a sequence of two events X1 and X2, the joint
probability is

P(X1,X2) = p(X2|X1)p(X1) (2)

Since we assume that the sequence is iid (identically and
independently distributed), by definition p(X2|X1) = P(X2).
Thus, for a sequence of n events (coin tosses), we have

p(x1, x2, . . . , xn;µ) =
n∏

i=1

p(xi ;µ) (3)

if the probability of heads is 30%, the the probability of the
sequence for coin 2 can be calculated as

p(T ,T ,T ,H,T ,T ,T ,H,T ,T ;µ) = µ2(1− µ)8 =

(
3

10

)2 ( 7

10

)8

(4)
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Probability of sequence of events

Thus far, we have considered p(x ;µ) as a function of x ,
parametrized by µ. If we view p(x ;µ) as a function of µ, then
it is called the likelihood function.

Maximum likelihood estimation basically chooses a value of µ
that maximizes the likelihood function given the observed data.
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Maximum likelihood for Bernoulli

The likelihood for a sequence of i.i.d. Bernoulli random
variables X = [x1, x2, . . . , xn] with xi ∈ {0, 1} is then

p(X;µ) =
n∏

i=1

p(xi ;µ) =
n∏

i=1

µxi (1− µ)1−xi (5)

We usually maximize the log likelihood function rather than the
original function

Often easier to take the derivative

the log function is monotonically increasing, thus, the
maximum (argmax) is the same

Avoid numerical problems involved with multiplying lots
of small numbers
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Log likelihood

Thus, instead of maximizing this

p(X;µ) =
n∏

i=1

µxi (1− µ)1−xi (6)

we maximize this

log p(X;µ) = log
n∏

i=1

µxi (1− µ)1−xi

=
n∑

i=1

log
{
µxi (1− µ)1−xi

}
=

n∑
i=1

[
logµxi + log(1− µ)1−xi

]
=

n∑
i=1

[xi logµ+ (1− xi ) log(1− µ)]
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Log likelihood

Note that one often denotes the log likelihood function with
the symbol L = log p(X;µ).

A function f defined on a subset of the real numbers with real
values is called monotonic (also monotonically increasing, in-
creasing or non-decreasing), if for all x and y such that x ≤ y
one has f (x) ≤ f (y)

Thus, the monotonicity of the log function guarantees that

argmax
µ

p(X;µ) = argmax
µ

log p(X;µ) (7)
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ML estimate

The ML estimate of the parameter µ is then

argmax
µ

n∑
i=1

[xi logµ+ (1− xi ) log(1− µ)] (8)

We can calculate the argmax by setting the first derivative
equal to zero and solving for µ
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ML estimate

Thus

∂

∂µ
log p(X;µ) =

n∑
i=1

∂

∂µ
[xi logµ+ (1− xi ) log(1− µ)]

=
n∑

i=1

xi
∂

∂µ
logµ+

n∑
i=1

(1− xi )
∂

∂µ
log(1− µ)

=
1

µ

n∑
i=1

xi −
1

1− µ

n∑
i=1

(1− xi )
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ML estimate

and finally, to find the maximum we set
∂

∂µ
log p(X;µ) = 0:

0 =
1

µ

n∑
i=1

xi −
1

1− µ

n∑
i=1

(1− xi )

1− µ
µ

=

∑n
i=1(1− xi )∑n

i=1 xi

1

µ
− 1 =

∑n
i=1 1∑n
i=1 xi

− 1

1

µ
=

n∑n
i=1 xi

µ̂ML =
1

n

n∑
i=1

xi

Reassuringly, the maximum likelihood estimate is just the
proportion of flips that came out heads.
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Problems with ML estimation

Does it really make sense that

H,T,H,T → µ̂ = 0.5

H,T,T,T → µ̂ = 0.25

T,T,T,T→ µ̂ = 0.0

ML estimation does not incorporate any prior knowledge and
does not generate an estimate of the certainty of its results.
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Maximum a posteriori Estimation

Bayesian approaches try to reflect our belief about µ. In this
case, we will consider µ to be a random variable.

p(µ|X) =
p(X|µ)p(µ)

p(X)
(9)

Thus, Bayes’ law converts our prior belief about the parameter
µ (before seeing data) into a posterior probability, p(µ|X), by
using the likelihood function p(X|µ). The maximum
a-posteriori (MAP) estimate is defined as

µ̂MAP = argmax
µ

p(µ|X) (10)
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Maximum a posteriori Estimation

Note that because p(X) does not depend on µ, we have

µ̂MAP = argmax
µ

p(µ|X)

= argmax
µ

p(X|µ)p(µ)

p(X)

= argmax
µ

p(X|µ)p(µ)

This is essentially the basic idea of the MAP equation used by
SNVMix for variant calling
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MAP Estimation; What does it buy us?

To take a simple example of a situation in which MAP estima-
tion might produce better results than ML estimation, let us
consider a statistician who wants to predict the outcome of the
next election in the USA.

The statistician is able to gather data on party preferences
by asking people he meets at the Wall Street Golf Club2

which party they plan on voting for in the next election

The statistician asks 100 people, seven of whom answer
“Democrats”. This can be modeled as a series of
Bernoullis, just like the coin tosses.

In this case, the maximum likelihood estimate of the
proportion of voters in the USA who will vote democratic
is µ̂ML = 0.07.

2i.e., a notorious haven of ultraconservative Republicans
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MAP Estimation; What does it buy us?

Somehow, the estimate of µ̂ML = 0.07 doesn’t seem quite right
given our previous experience that about half of the electorate
votes democratic, and half votes republican. But how should
the statistician incorporate this prior knowledge into his
prediction for the next election?

The MAP estimation procedure allows us to inject our prior
beliefs about parameter values into the new estimate.
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Beta distribution: Background

The Beta distribution is appropriate to express prior belief about
a Bernoulli distribution. The Beta distribution is a family of
continuous distributions defined on [0, 1] and parametrized by
two positive shape parameters, α and β

p(µ) =
1

B(α, β)
·µα−1 (1− µ)β−1

here, µ ∈ [0, 1], and

B(α, β) =
Γ(α + β)

Γ(α) · Γ(β)

where Γ is the Gamma function
(extension of factorial). 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

beta distribution

x
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f

α=β=0.5
α=5, β=1
α=1, β=3
α=β=2
α=2, β=5
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Beta distribution: Background

Random variables are either discrete (i.e., they can assume one
of a list of values, like the Bernoulli with heads/tails) or con-
tinuous (i.e., they can take on any numerical value in a certain
interval, like the Beta distribution with µ).

A probability density function (pdf) of a continuous
random variable, is a function that describes the relative
likelihood for this random variable to take on a given
value, i.e., p(µ) : R→ R+ such that

Pr(µ ∈ (a, b)) =

∫ b

a
p(µ)dµ (11)

The probability that the value of µ lies between a and b is given by integrating the pdf over this region
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Beta distribution: Background

Recall the difference between a PDF (for continuous random
variable) and a probability mass function (PMF) for a discrete
random variable

A PMF is defined as Pr(X = xi ) = pi , with 0 ≤ pi ≤ 1
and

∑
i pi = 1

e.g., for a fair coin toss (Bernoulli),
Pr(X = heads) = Pr(X = tails) = 0.5

In contrast, for a PDF, there is no requirement that
p(µ) ≤ 1, but we do have∫ +∞

−∞
p(µ)dµ = 1 (12)
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Beta distribution: Background

We calculate the PDF for the Beta distribution for a
sequence of values 0, 0.01, 0.02, . . . , 1.00 in R as follows

x <- seq(0.0, 1.0, 0.01)

y <- dbeta(x, 3, 3)

Recalling how to approximate an integral with a Riemann
sum,

∫ b
a p(µ)dµ ≈

∑n
i=1 p(µi )∆i , where µi is a point in

the subinterval ∆i and the subintervals span the entire
interval [a, b], we can check that

∫ 1
0 Beta(µ)dµ = 1

> sum ((1/101)*y)

[1] 0.990099

Here, ∆i = 1
101

and the vector y contains the various values of µi
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Beta distribution: Background

The mode of a continuous probability distribution is the
value x at which its probability density function has its
maximum value

The mode of the Beta(α, β) distribution has its mode at

α− 1

α + β − 2
(13)

alpha <- 7

beta <- 3

x <- seq(0.0, 1.0, 0.01)

y <- dbeta(x, alpha, beta)

md <- (alpha-1)/(alpha + beta - 2)

title <- expression(paste(alpha,"=7 ",beta,"=3"))

plot(x, y, type="l",main=title,

xlab="x",ylab="pdf",col="blue",lty=1,cex.lab=1.25)

abline(v=md,col="red",lty=2,lwd=2)
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Beta distribution: Background

The code from the previous slide leads to

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

α=7 β=3

x

pd
f

The mode, shown as the dotted red line, is calculated as
α− 1

α + β − 2
=

7 − 1

7 + 3 − 2
= 0.75
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With all of this information in hand, let’s get back to MAP
estimation!

Going back to Bayes rule, again, we seek the value of µ
that maximizes the posterior Pr(µ|X):

Pr(µ|X) =
Pr(X|µ)Pr(µ)

Pr(X)
(14)
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We then have

µ̂MAP = argmax
µ

Pr(µ|X)

= argmax
µ

Pr(X|µ)Pr(µ)

Pr(X)

= argmax
µ

Pr(X|µ)Pr(µ)

= argmax
µ

∏
xi∈X

Pr(xi |µ)Pr(µ)
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As we saw above for maximum likelihood estimation, it is easier
to calculate the argmax for the logarithm

argmax
µ

Pr(µ|X) = argmax
µ

logPr(µ|X)

= argmax
µ

log
∏
xi∈X

Pr(xi |µ) · Pr(µ)

= argmax
µ

∑
xi∈X
{logPr(xi |µ)}+ logPr(µ)
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Let’s go back now to our problem of predicting the results of
the next election. Essentially, we plug in the equations for the
distributions of the likelihood (a Bernoulli distribution) and the
prior (A Beta distribution).

Pr(µ|X) ∝ Pr(xi |µ) · Pr(µ)

posterior

Likelihood (Bernoulli)

prior (Beta)
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We thus have that

Pr(xi |µ) = Bernoulli(xi |µ) = µxi (1− µ)1−xi

Pr(µ) = Beta(µ|α, β) =
1

B(α, β)
· µα−1 (1− µ)β−1

thus
Pr(µ|X) ∝ Pr(X|µ)Pr(µ)

is equivalent to

Pr(µ|X) ∝

{∏
i

Bernoulli(xi |µ)

}
· Beta(µ|α, β) (15)
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Furthermore

L = logPr(µ|X)

= log

{∏
i

Bernoulli(xi |µ)

}
· Beta(µ|α, β)

=
∑
i

logBernoulli(xi |µ) + logBeta(µ|α, β)

We solve for µ̂MAP = argmaxµ L as follows

argmax
µ

∑
i

logBernoulli(xi |µ) + logBeta(µ|α, β)

Note that this is almost the same as the ML estimate except
that we now have an additional term resulting from the prior
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Again, we find the maximum value of µ by setting the first
derivative of L equal to zero and solving for µ

∂

∂µ
L =

∑
i

∂

∂µ
logBernoulli(xi |µ) +

∂

∂µ
logBeta(µ|α, β)

The first term is the same as for ML3, i.e.

∑
i

∂

∂µ
logBernoulli(xi |µ) =

1

µ

n∑
i=1

xi−
1

1− µ

n∑
i=1

(1−xi ) (16)

3
see slide 11
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To find the second term, we note

∂

∂µ
logBeta(µ|α, β) =

∂

∂µ
log

{
Γ(α + β)

Γ(α) · Γ(β)
· µα−1 (1− µ)β−1

}
=

∂

∂µ
log

Γ(α + β)

Γ(α) · Γ(β)
+

∂

∂µ
logµα−1 (1− µ)β−1

= 0 +
∂

∂µ
logµα−1 (1− µ)β−1

= (α− 1)
∂

∂µ
logµ+ (β − 1)

∂

∂µ
log (1− µ)

=
α− 1

µ
− β − 1

1− µ
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To find µ̂MAP , we now set
∂

∂µ
L = 0 and solve for µ

0 =
∂

∂µ
L

=
1

µ

n∑
i=1

xi −
1

1− µ

n∑
i=1

(1− xi ) +
α− 1

µ
− β − 1

1− µ

and thus

µ

[
n∑

i=1

(1− xi ) + β − 1

]
= (1− µ)

[∑
i

xi + α− 1

]

µ

[
n∑

i=1

(1− xi ) +
∑
i

xi + β − 1 + α− 1

]
=

∑
i

xi + α− 1

µ

[
n∑

i=1

1 + β + α− 2

]
=

∑
i

xi + α− 1
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Finally, if we let our Bernoulli distribution be coded as
Republican=1 and Democrat=0, we have that

∑
i

xi = nr where nr denotes the number of Republican voters

(17)
Then,

µ

[
n∑

i=1

1 + β + α− 2

]
=

∑
i

xi + α− 1

µ [n + β + α− 2] = nR + α− 1

and finally

µ̂MAP =
nR + α− 1

n + β + α− 2
(18)
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And now our prediction

It is useful to compare the ML and the MAP predictions. Note
again that α and β are essentially the same thing as pseudo-
counts, and the higher their value, the more the prior affects
the final prediction (i.e., the posterior).

Recall that in our poll of 100 members of the Wall Street Golf
club, only seven said they would vote democratic. Thus

n = 100

nr = 93

We will assume that the mode of our prior belief is that
50% of the voters will vote democratic, and 50%
republican. Thus, α = β. However, different values for
alpha and beta express different strengths of prior belief



Variant
Calling in
NGS Data

Peter N
Robinson

Today’s
Lecture

SNPs and
SNVs

Estimating
Parameters
from Data

Maximum
Likelihood
(ML)
Estimation

Beta
distribution

Maximum a
posteriori
(MAP)
Estimation

MAQ

And now our prediction

n nR α β µ̂ML µ̂MAP

100 93 1 1 0.93 0.93
100 93 5 5 0.93 0.90
100 93 100 100 0.93 0.64
100 93 1000 1000 0.93 0.52
100 93 10000 10000 0.93 0.502

Thus, MAP “pulls” the estimate towards the prior to an extent that depends on the strength of the prior
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The use of MAP in MAQ

Recall from the lecture that we call the posterior probabilities
of the three genotypes given the data D, that is a column with
n aligned nucleotides and quality scores of which k correspond
to the reference a and n − k to a variant nucleotide b.

p(G = 〈a, a〉|D) ∝ p(D|G = 〈a, a〉)p(G = 〈a, a〉)
∝ αn,k · (1− r)/2

p(G = 〈b, b〉|D) ∝ p(D|G = 〈b, b〉)p(G = 〈b, b〉)
∝ αn,n−k · (1− r)/2

p(G = 〈a, b〉|D) ∝ p(D|G = 〈a, b〉)p(G = 〈a, b〉)

∝
(
n

k

)
1

2n
· r
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MAQ: Consensus Genotype Calling

Note that MAQ does not attempt to learn the parameters,
rather it uses user-supplied parameter r which roughly corre-
sponds to µ in the election.

MAQ calls the the genotype with the highest posterior
probability:

ĝ = argmax
g∈(〈a,a〉,〈a,b〉,〈b,b〉)

p(g |D)

The probability of this genotype is used as a measure of
confidence in the call.
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MAQ: Consensus Genotype Calling

A major problem in SNV calling is false positive heterozygous
variants. It seems less probable to observe a heterozygous call
at a position with a common SNP in the population. For this
reason, MAQ uses a different prior (r) for previously known
SNPs (r = 0.2) and “new” SNPs (r = 0.001).

Let us examine the effect of these two priors on variant calling.
In R, we can write

p(G = 〈a, b〉|D) ∝
(
n

k

)
1

2n
· r

as

> dbinom(k,n,0.5) * r

where k is the number of non-reference bases, n is the total number of bases, and 0.5 corresponds to the

probability of seeing a non-ref base given that the true genotype is heterozygous.
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MAQ: Consensus Genotype Calling

A major problem in SNV calling is false positive heterozygous
variants. It seems less probable to observe a heterozygous call
at a position with a common SNP in the population. For this
reason, MAQ uses a different prior (r) for previously known
SNPs (r = 0.2) and “new” SNPs (r = 0.001).

Let us examine the effect of these two priors on variant calling.
In R, we can write

p(G = 〈a, b〉|D) ∝
(
n

k

)
1

2n
· r

as

> dbinom(k,n,0.5) * r

where k is the number of non-reference bases, n is the total number of bases, and 0.5 corresponds to the

probability of seeing a non-ref base given that the true genotype is heterozygous.
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MAQ: Consensus Genotype Calling
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The figures show the posterior for the heterozygous
genotype according to the simplified MAQ algorithm
discussed in the previous lecture

The prior r = 0.0001 means than positions with 5 or less
ALT bases do not get called as heterozygous, whereas the
prior with r = 0.2 means that positions with 5 bases do
get a het call
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MAQ: Consensus Genotype Calling

What have we learned?

Get used to Bayesian techniques important in many areas
of bioinformatics

understand the difference between ML and MAP
estimation

understand the Beta function, priors, pseudocounts

Note that MAQ is no longer a state of the art algorithm,
and its use of the MAP framework is relatively simplistic

Nonetheless, a good introduction to this topic, and we will
see how these concepts are used in EM today
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