
Holtgrewe, Manuel
Department for Computer Science, FU Berlin

Genomics
Exercise 2

Read Mapping Considerations

2

EXERCISE 2.1
Hamming and Edit Distance

Genomics Exercise 2, October 31, 2013

3 Genomics Exercise 2, October 31, 2013

Exercise 2.1 a)
a) Write up the definition of the hamming distance and edit distance. For the edit
distance, consider only insert, delete, and replace operations. Each operation has a
cost of one.

Hamming Distance
Definition: An alphabet ∑ is a finite set of characters, e.g. ∑ = {C, G, A, T} for DNA.
Definition: A sequence S of length n (0≤n) over an alphabet ∑ is an ordered list of
characters from ∑. The i-th character from S is denoted as S[i] (i = 0…n-1).
Definition: Given two sequences A and B of the same length n, the Hamming
distance H(A, B) of A and B is defined as ∑ I(A i , B i)n−1

i=0 where 𝐼 is the indicator
function (i.e. I(x, y) = 1 if x = y and I(x, y) = 0 otherwise).
Observation: 𝐻 𝐴,𝐵 ≤ 𝑛

4 Genomics Exercise 2, October 31, 2013

Exercise 2.1 a)
a) Write up the definition of the hamming distance and edit distance. For the edit
distance, consider only insert, delete, and replace operations. Each operation has a
cost of one.

Edit Distance
Definition: Given a sequence S of length n, an integer i (0 ≤ i ≤ n), and a character x
∈ ∑, we define the insert operation ins(S, i, x) as a function 𝑖𝑛𝑖 ∶ ∑𝑛 → ∑𝑛+1 that
inserts x into S after S[i].
Definition: Given a sequence S of length n (1≤n) and an integer i (0 ≤ i ≤ n − 1), we
define the delete operation del(S, i, x) as a function 𝑑𝑑𝑑: ∑𝑛 → ∑𝑛−1 that removes S[i]
from S.
Definition: Given a sequence S of length n, an integer i (0 ≤ i ≤ n − 1), and a
character x ∈ ∑, we define the replace operation rep(S, i, x) as a function 𝑟𝑑𝑟: ∑𝑛 →
∑𝑛 that replaces S[i] by x.
Definition: Given two sequences A and B of lengths n and m, we define the edit
distance E(A, B) as the smallest number of insertion, deletion, and replacement
operations such that after applying the operations, A is transformed into B.
Observation: 𝐸 𝐴,𝐵 ≤ max(n, m)

5 Genomics Exercise 2, October 31, 2013

Exercise 2.1 b)
b) Determine the Hamming distances and the edit distance between the following
pairs of strings.

TGGTACTTCTC TGGTGGTGG TAGGTGGTG
TAGTTCTTCTT TGGTGGTGG TGGTGGTGG

Hamming Distance (counting mismatches)
TGGTACTTCTC TGGTGGTGG TAGGTGGTG
 X X X = 3 = 0 X XX XX = 5
TAGTTCTTCTT TGGTGGTGG TGGTGGTGG

Edit Distance (alignments)
TGGTACTTCTC TGGTGGTGG TAGGTGGTG-
| || ||||| = 3 ||||||||| = 0 | ||||||| = 2
TAGTTCTTCTT TGGTGGTGG T-GGTGGTGG

TAGGTGGT-G
| |||||| |
T-GGTGGTGG

6

Exercise 2.1 c)
c) Write a function, method, or program in a programming language of your choice to
determine the edit distance between two given text strings. Test it with the examples
of b)

Genomics Exercise 2, October 31, 2013

13:27:48 ~ $ python
Python 2.7.5+ (default, Sep 19 2013, 13:48:49)
[GCC 4.8.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> # Adapted from http://en.wikibooks.org/wiki/Algorithm_Implementation
... def edit_distance(s1, s2):
... # Handle corner cases, below we can assume len(s1) >= len(s2) > 0.
... if len(s1) < len(s2): return edit_distance(s2, s1)
... if len(s2) == 0: return len(s1)
...
... # We fill the matrix column-wise.
... previous_col = xrange(len(s2) + 1) # == [0, 1, ..., len(s2)]
... for i, c1 in enumerate(s1):
... current_col = [i + 1]
... for j, c2 in enumerate(s2):
... hor = previous_col[j + 1] + 1 # horizontal in matrix
... vert = current_col[j] + 1 # vertical in matrix
... diag = previous_col[j] + (c1 != c2) # diagonal in matrix
... current_col.append(min(vert, hor, diag))
... previous_col = current_col
... return previous_col[-1]

7

Exercise 2.1 c)
c) Write a function, method, or program in a programming language of your choice to
determine the edit distance between two given text strings. Test it with the examples
of b)

Genomics Exercise 2, October 31, 2013

... return previous_row[-1]

...
>>> edit_distance('TGGTACTTCTC', 'TAGTTCTTCTT')
3
>>> edit_distance('TGGTGGTGG', 'TGGTGGTGG')
0
>>> edit_distance('TAGGTGGTG', 'TGGTGGTGG')
2
...

8

EXERCISE 2.2
Read Mapping

Genomics Exercise 2, October 31, 2013

9 Genomics Exercise 2, October 31, 2013

Exercise 2.2 a)
a) What is the purpose of read mapping in a next generation sequencing workflow?
Which constraints make it special from more general approximate string matching
problems?

Purpose (for whole genome/exome sequencing)
• Given a reference sequence S and a large set R of short reads r from a donor that

has a genome G that is similar to S.
• The overall aim of WGS/WES is to measure features of the donor’s genome (e.g.

SNPs, small indels, structural variants, copy number variations, …).
• Ideally, we want to find the positions in S for each r that correspond to the sample

positions in G.
• Many practitioners want to find a (the?) position in S that corresponds to the

sample position in G in the “best” fashion.
• Another option would be to enumerate a set of positions in S that are likely to

correspond to the sample position of r in G. After mapping all reads, a post-
processing step could be used to select a “best” location for each read using the
“global” view. However, this is rarely (if ever) done given the huge data sets
generated by NGS.

10 Genomics Exercise 2, October 31, 2013

Exercise 2.2 b)
b) Give a formal definition of the read mapping problem.

For Hamming distance
Given a reference sequence S over an alphabet ∑, a set R of reads r, the Hamming
distance function H, and a maximal distance k.
For each read r, we now want to find a set of matches (locations) in S.
A feasible match is a match with distance ≤ k. A best match for r is a feasible
match that has the smallest distance of all feasible matches. There can be more than
one best match. Matches can be ranked ascendingly by their distance.
We now can define multiple problems. For each read (1) find a best match, (2) find all
best matches, (3) find up to c best matches (for a constant c), (4) find up to c best-
ranking feasible matches, (5) find all matches, ...
The extension to forward and reverse strand of the reference is trivial.

For Edit distance
The definition of a match becomes more complicated (see lecture script and
Holtgrewe et al., 2011) but the remaining definition remains the same.

11 Genomics Exercise 2, October 31, 2013

Exercise 2.2 c)
c) Solve the following read mapping problem instances. The distance function is the
edit distance. All reads are of good quality. Write down all matches with a distance
not greater than 2.
Reference: TGGTACTTCTCCTACCCCCCA
Read #1: TACTT

Read #1

Reference: TGGTACTTCTCCTACCCCCCA
 TACTT

Reference: TGGTACTT-CTCCTACCCCCCA
 TACTT

Reference: TGGTACTTCTCCTACCCCCCA
 TACTT

12 Genomics Exercise 2, October 31, 2013

Exercise 2.2 c)
c) Solve the following read mapping problem instances. The distance function is the
edit distance. All reads are of good quality. Write down all matches with a distance
not greater than 2.
Reference: TGGTACTTCTCCTACCCCCCA
Read #2: CTTTC

Read #2

Reference: TGGTACT-TCTCCTACCCCCCA
 CTTTC

Reference: TGGTACTTC--TCCTACCCCCCA
 CTTTC

Reference: TGGTACTTCTCCTACCCCCCA
 CTTTC

13 Genomics Exercise 2, October 31, 2013

Exercise 2.2 c)
c) Solve the following read mapping problem instances. The distance function is the
edit distance. All reads are of good quality. Write down all matches with a distance
not greater than 2.
Reference: TGGTACTTCTCCTACCCCCCA
Read #3: TCCTC

Read #3

Reference: TGGTACTTC-TCCTACCCCCCA
 TCCTC

Reference: TGGTACTTCTCCTACCCCCCA
 TCCTC

14 Genomics Exercise 2, October 31, 2013

Exercise 2.2 c)
c) Solve the following read mapping problem instances. The distance function is the
edit distance. All reads are of good quality. Write down all matches with a distance
not greater than 2.
Reference: TGGTACTTCTCCTACCCCCCA
Read #4: CCGCC

Read #4

Reference: TGGTACTTCTCCTACCCCCCA
 CCGCC

Reference: TGGTACTTCTCCTACCCCCCA
 CCGCC

Reference: TGGTACTTCTCCTACCCCCCA
 CCGCC

15 Genomics Exercise 2, October 31, 2013

Exercise 2.2 d)
d) This is optional. Think about how a simple read mapper could be implemented, for
instance, by reusing the result of 1b). The input to the function could be a reference
sequence, a read, a constant k and a distance function. The output should contain
locations of the reference sequence where the read matches with a distance not
greater than k. There is no need to take efficiency considerations into account.
Implement it as a testable function/method in one of your favourite programming
languages. Show the correctness of your implementation by comparing it with the
result of c).

16 Genomics Exercise 2, October 31, 2013

Exercise 2.2 d)
#!/usr/bin/env python

"""Primitive read mapper.

The program gets the reference and a read as the argument. It will print a

result TSV table.

USAGE: read_mapper.py REF READ

For example:

"""

import sys

17 Genomics Exercise 2, October 31, 2013

Exercise 2.2 d)
def begin_search(ref, read, k):
 previous_col = range(len(read) + 1) # no free begin gaps
 # Store best match position for reverse search.
 best = None
 for i, c1 in enumerate(ref):
 current_col = [i + 1] # no free end gaps
 for j, c2 in enumerate(read):
 hor = previous_col[j + 1] + 1 # horizontal in matrix
 vert = current_col[j] + 1 # vertical in matrix
 diag = previous_col[j] + (c1 != c2) # diagonal in matrix
 current_col.append(min(vert, hor, diag))
 if current_col[-1] <= k:
 if best is None or current_col[-1] < best[1]:
 best = (i + 1, current_col[-1])
 previous_col = current_col
 assert best is not None
 return best

18 Genomics Exercise 2, October 31, 2013

Exercise 2.2 d)
def edit_distance_search(ref, read, k):
 previous_col = range(len(read) + 1) # no free begin gaps
 for i, c1 in enumerate(ref):
 current_col = [0] # free begin gaps
 for j, c2 in enumerate(read):
 hor = previous_col[j + 1] + 1 # horizontal in matrix
 vert = current_col[j] + 1 # vertical in matrix
 diag = previous_col[j] + (c1 != c2) # diagonal in matrix
 current_col.append(min(vert, hor, diag))
 if current_col[-1] <= k:
 ref_rev, read_rev = ref[:i + 1][::-1], read[::-1]
 ref_rev = ref_rev[:len(read) + k] # no need to search more
 pos, score = begin_search(ref_rev, read_rev, k)
 yield {'begin': i + 1 - pos, 'end': i + 1,
 'ref': ref[i + 1 - pos:i + 1], 'read': read,
 'score': score}
 previous_col = current_col

19 Genomics Exercise 2, October 31, 2013

Exercise 2.2 d)
if __name__ == '__main__':
 # Program entry point.
 if len(sys.argv) != 3:
 print 'Invalid number of arguments'
 print ''
 print 'Usage: read_mapper.py REF READ'
 print ''
 print 'Example: read_mapper.py TGGTACTTCTCCTACCCCCCA TACTT'
 ref = sys.argv[1]
 read = sys.argv[2]

 print 'BEGIN\tEND\tREF\tREAD\tSCORE'
 for match in edit_distance_search(ref, read, 2):
 print '%(begin)d\t%(end)d\t%(ref)s\t%(read)s\t%(score)d' % match

20

Exercise 2.2 d)
The program finds surprisingly many matches for the first pair:

Genomics Exercise 2, October 31, 2013

17:01:00 tmp $ python edit_distance2.py TGGTACTTCTCCTACCCCCCA TACTT
BEGIN END REF READ SCORE
3 6 TAC TACTT 2
3 7 TACT TACTT 1
3 8 TACTT TACTT 0
3 9 TACTTC TACTT 1
7 10 TCT TACTT 2
7 11 TCTC TACTT 2
9 13 TCCT TACTT 2
9 14 TCCTA TACTT 2
12 15 TAC TACTT 2
12 16 TACC TACTT 2
12 17 TACCC TACTT 2

21 Genomics Exercise 2, October 31, 2013

Exercise 2.2 e)
e) To make yourself familiar with various read mappers, you should reproduce the
Rabema benchmark that was partly introduced in the lecture. […]

Preliminaries

• Download SeqAn through SVN and compile razers3 and Rabema.
• Download and install samtools.
• Download and install BWA.
• Download and install Bowtie2.
• Download and extract rabema-data.tar.gz from Rabema homepage

22

Exercise 2.2 e)

Genomics Exercise 2, October 31, 2013

Use RazerS 3 to build gold standard SAM file.

23

Exercise 2.2 e)

Genomics Exercise 2, October 31, 2013

Prepare RazerS 3 “golden” SAM file for input to rabema_build_gold_standard.

24

Exercise 2.2 e)

Genomics Exercise 2, October 31, 2013

Build gold standard intervals (GSI) file with rabema_build_gold_standard.

25

Exercise 2.2 e)

Genomics Exercise 2, October 31, 2013

Run RazerS 3 in lossy mode and evaluate results using rabema_evaluate.

26

Exercise 2.2 e)

Genomics Exercise 2, October 31, 2013

Run BWA and evaluate results using rabema_evaluate.

	Genomics�Exercise 2
	Exercise 2.1
	Exercise 2.1 a)
	Exercise 2.1 a)
	Exercise 2.1 b)
	Exercise 2.1 c)
	Exercise 2.1 c)
	Exercise 2.2
	Exercise 2.2 a)
	Exercise 2.2 b)
	Exercise 2.2 c)
	Exercise 2.2 c)
	Exercise 2.2 c)
	Exercise 2.2 c)
	Exercise 2.2 d)
	Exercise 2.2 d)
	Exercise 2.2 d)
	Exercise 2.2 d)
	Exercise 2.2 d)
	Exercise 2.2 d)
	Exercise 2.2 e)
	Exercise 2.2 e)
	Exercise 2.2 e)
	Exercise 2.2 e)
	Exercise 2.2 e)
	Exercise 2.2 e)

