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Estimating

Parameters In many situations in bioinformatics, we want to estimate “op-
from Bata timal” parameters from data. In the examples we have seen in
the lectures on variant calling, these parameters might be the
error rate for reads, the proportion of a certain genotype, the
proportion of nonreference bases etc. However, the hello world
example for this sort of thing is the coin toss, so we will start

with that.
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Coin toss

Let's say we have two coins that are each tossed 10 times
e Coin1: HTTHHHTHTT
e Coin2: T T, THTTTHTT

Intuitively, we might guess that coin one is a fair coin, i.e.,
P(X = H) = 0.5, and that coin 2 is biased, i.e.,
P(X =H)#0.5



Discrete Random Variable
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Peter N Let us begin to formalize this. We model the coin toss process
as follows.
Estimating . . . .
Parameters @ The outcome of a single coin toss is a random variable X
from Data .
that can take on values in a set X = {x1,x2,...,Xn}

@ In our example, of course, n = 2, and the values are
x1 = 0 (tails) and xo = 1 (heads)

@ We then have a probability mass function p: X — [0, 1];
the law of total probability states that ) ., p(x;) =1

@ This is a Bernoulli distribution with parameter u:

p(X =1pu)=p (1)
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Probability of sequence of events

In general, for a sequence of two events X; and X3, the joint
probability is

P(X1, X2) = p(X2|X1)p(X1) (2)
Since we assume that the sequence is iid (identically and
independently distributed), by definition p(X2|X1) = P(X2).
Thus, for a sequence of n events (coin tosses), we have

p(x1, X2, - -y Xni 1) = HP(Xi; 1) (3)
i=1

if the probability of heads is 30%, the the probability of the
sequence for coin 2 can be calculated as

2 8
p(T, T, T,H, T, T, T, H, T,T;u)zﬁ(l—msz(%) (1) (4)



Probability of sequence of events

Parameter
Estimation

Peter N
Robinson

Estimating

Parameters Thus far, we have considered p(x;u) as a function of x,
from Dtz parametrized by u. If we view p(x; i) as a function of y, then
it is called the likelihood function.

Maximum likelihood estimation basically chooses a value of u
that maximizes the likelihood function given the observed data.
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The likelihood for a sequence of i.i.d. Bernoulli random

Rowmson  variables X = [x1, x2, .. ., ] with x; € {0, 1} is then
Estimating n n
Parameters . e
from Data p(X; p) = HP(X’.; p) = H,ux,(l _ M)l X (5)
i=1 i=1

We usually maximize the log likelihood function rather than the
original function

@ Often easier to take the derivative
@ the log function is monotonically increasing, thus, the
maximum (argmax) is the same

@ Avoid numerical problems involved with multiplying lots
of small numbers
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Log likelihood

Thus, instead of maximizing this

we maximize this

log p(X; 1)

p(X; ) = [ wo(1 = )t
i=1

n
= log [[ (1 — )t
i=1

= Y log {p (1 - p)=}
i=1

= ) [log ¥ + log(1 — p)* =]
i=1

- Z [xilog p + (1 — x;) log(1 — p)]
i=1
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Estimating the symbol £ = log p(X; 1).
Parameters

from Data A function f defined on a subset of the real numbers with real
values is called monotonic (also monotonically increasing, in-
creasing or non-decreasing), if for all x and y such that x <y
one has f(x) < f(y)

Thus, the monotonicity of the log function guarantees that

argmax p(X; p) = argmax log p(X; ) (7)
1 p
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ML estimate

The ML estimate of the parameter y is then

n
argmaxz [xilog 1+ (1 — x;) log(1 — )]
izt

We can calculate the argmax by setting the first derivative
equal to zero and solving for

(8)
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from Data . -
0 | X: — — [x; | 1—x)l 1
5, losp(Xin) = Z 5y, Xilog i+ (1 —x) log(1 — u)]

= Zx, Iogu-l-z 1—x) 88 log(1 — 1)
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ML estimate

and finally, to find the maximum we set 9 log p(X; 1) = 0:

o
1 o 1 <
0 = —>» x— 1= (1—x)
Ll I
I—p _ > i1 (1= xi)
jz 27:1 Xi
1 Tl
-1 = Z;’:l -1
jz Do Xi
1 _ n
1 27:1 Xi
1 n
/-,)/ML = - Xj
n 4

Reassuringly, the maximum likelihood estimate is just the
proportion of flips that came out heads.
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Problems with ML estimation

Does it really make sense that
e HTHT — i1=0.5
e HT,T,T —» 1 =0.25
o T, T T,T— [i=0.0

ML estimation does not incorporate any prior knowledge and
does not generate an estimate of the certainty of its results.
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case, we will consider y to be a random variable.

(X]p)p(p)

Maximum p X = pi 9

o () = P ©)
Estimation Thus, Bayes' law converts our prior belief about the parameter
u (before seeing data) into a posterior probability, p(u|X), by

using the likelihood function p(X|x). The maximum

a-posteriori (MAP) estimate is defined as

fimap = argmax p(u|X) (10)
y2
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Maximum a posteriori Estimation

Note that because p(X) does not depend on p, we have

fimap = argmax p(u|X)
1

g POX0200)
Iz p(X)
= argmax p(X|p)p(k)

This is essentially the basic idea of the MAP equation used by
SNVMix for variant calling
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Estimation To take a simple example of a situation in which MAP estima-

Peter N tion might produce better results than ML estimation, let us
consider a statistician who wants to predict the outcome of the
next election in the USA.

Maximum @ The statistician is able to gather data on party preferences

My by asking people he meets at the Wall Street Golf Club?
which party they plan on voting for in the next election

@ The statistician asks 100 people, seven of whom answer
“Democrats”. This can be modeled as a series of
Bernoullis, just like the coin tosses.

@ In this case, the maximum likelihood estimate of the
proportion of voters in the USA who will vote democratic
is ﬁML = 0.07.

li.e., a notorious haven of ultraconservative Republicans



MAP Estimation; What does it buy us?

Parameter
Estimation

Peter N
Robinson

Somehow, the estimate of iy = 0.07 doesn't seem quite right
given our previous experience that about half of the electorate
votes democratic, and half votes republican. But how should

Maximum

(L:\:*’L';“Wd the statistician incorporate this prior knowledge into his
Estimation prediction for the next election?

The MAP estimation procedure allows us to inject our prior
beliefs about parameter values into the new estimate.
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Beta distribution: Background

The Beta distribution is appropriate to express prior belief about
a Bernoulli distribution. The Beta distribution is a family of
continuous distributions defined on [0, 1] and parametrized by
two positive shape parameters, « and 3

beta distribution

1 a— - aq
P = Bt AT T

13111
NerRos

BRhem o
PERTR G
GoHAL

here, u € [0, 1], and

() T(5) o

pdf
15

B(avﬁ) =

where I is the Gamma function Voo N,
(extension of factorial).
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Beta distribution: Background

Random variables are either discrete (i.e., they can assume one
of a list of values, like the Bernoulli with heads/tails) or con-
tinuous (i.e., they can take on any numerical value in a certain
interval, like the Beta distribution with ).

@ A probability density function (pdf) of a continuous
random variable, is a function that describes the relative

likelihood for this random variable to take on a given
value, i.e., p(u) : R — R such that

b
Pr(u € (2.6) = | plu)d (11)

The probability that the value of . lies between a and b is given by integrating the pdf over this region
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Fobinson variable) and a probability mass function (PMF) for a discrete
random variable

e A PMF is defined as Pr(X = x;) = p;, with 0 < p; <1

and ), pi=1
et @ e.g., for a fair coin toss (Bernoulli),
distribution Pr(X = heads) = Pr(X = tails) = 0.5

@ In contrast, for a PDF, there is no requirement that
p(r) <1, but we do have

+oo
/ p(u)dp =1 (12)

—0o0
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Estimation @ We calculate the PDF for the Beta distribution for a

reshl sequence of values 0,0.01,0.02,...,1.00 in R as follows

x <- seq(0.0, 1.0, 0.01)
y <- dbeta(x, 3, 3)

@ Recalling how to approximate an integral with a Riemann
eta b . . .
cliais:ribution sum, fa p(lu)dlu’ ~ Z/n:]_ p(:ul')AI‘v Where Hi1s a pOInt In
the subinterval A; and the subintervals span the entire
interval [a, b], we can check that fol Beta(u)dp =1

> sum ((1/101)*y)
[1] 0.990099

Here, A; = ﬁ and the vector y contains the various values of 1}
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Estimation @ The mode of a continuous probability distribution is the

peter N value x at which its probability density function has its
maximum value

@ The mode of the Beta(«, 3) distribution has its mode at
a—1
_ 13
a+p—2 (13)

cliai::?ibution alpha <7
beta <- 3
x <- seq(0.0, 1.0, 0.01)
y <- dbeta(x, alpha, beta)
md <- (alpha-1)/(alpha + beta - 2)
title <- expression(paste(alpha,"=7 ",beta,"=3"))
plot(x, y, type="1",main=title,
xlab="x",ylab="pdf",col="blue",lty=1,cex.lab=1.25)
abline(v=md,col="red",1ty=2,1lwd=2)
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a=7p=3
Beta N
distribution 7
el T T T T T T
0.0 02 04 06 08 10
X
-1 7—1
The mode, shown as the dotted red line, is calculated as = = 0.75
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With all of this information in hand, let's get back to MAP
estimation!

@ Going back to Bayes rule, again, we seek the value of p
that maximizes the posterior Pr(1|X):

Maximum a PI‘(X“L)PI‘(ILL)
osteriori P X = - 14.
?MAP) r(u| ) PI‘(X) ( )

Estimation
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Maximum a posteriori (MAP) Estimation

We then have

fimap

argmax Pr(yu|X)
w

argmax Pr(X|p)Pr(x)
I Pr(X)

argmax Pr(X|u)Pr(u)
I

argmax H Pr(x;|pu)Pr(u)
® x;€X
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Maximum a posteriori (MAP) Estimation

As we saw above for maximum likelihood estimation, it is easier
to calculate the argmax for the logarithm

argmax Pr(u|X)
m

argmax log Pr(u|X)
m

argmax log H Pr(xj|p) - Pr(u)
® x;eX

argmax Z {log Pr(xi|p)} + log Pr(u)
® x;ieX
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Peter N Let's go back now to our problem of predicting the results of
the next election. Essentially, we plug in the equations for the
distributions of the likelihood (a Bernoulli distribution) and the

prior (A Beta distribution).

Pr(u|X) oc Pr(xilp) - Pr(u)

Maximum a . /
posteriori o posterlor

(MAP)
Estimation o Likelihood (Bernoulli)

@ prior (Beta)
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We thus have that

@ Pr(xj|u) = Bernoulli(x;|p) = p*i
e Pr(u) = Beta(p|a, B) =

thus

is equivalent to

Pr(p[X) o {

X

Pr(p|X) oc Pr(X]u)Pr(x)

H Bernoulli(x;|u)

i

} Beta(ulo, 8)  (15)
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Furthermore

L = logPr(ulX)

= log {H Bernoulli(x,-u)} - Beta(u|av, B)

1

= Z log Bernoulli(x;|u) + log Beta(u|a, 5)

]

We solve for fipap = argmaxuﬁ as follows

argmax » log Bernoulli(x;|u) 4 log Beta(ul|a, 5)

# i

Note that this is almost the same as the ML estimate except
that we now have an additional term resulting from the prior
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Again, we find the maximum value of i by setting the first
derivative of £ equal to zero and solving for p

0

O

The first term is the same as for ML2, i.e.

2
see slide 11

n

o 1
— log Bernoulli(x;|u) = — Xj—
2 PEEEDS

i

i=1

9 . 0
L = Z,: o log Bernoulli(x;|u) 4+ o log Beta(u|a, B)



Parameter
Estimation

Peter N
Robinson

Maximum a
posteriori
(MAP)
Estimation

Maximum a posteriori (MAP) Estimation

To find the second term, we note

% log Beta(u|a,

B)

ﬂo (a+8) a—17q _ \B-1

o g{()(ﬁ) (1=n) }
aﬁ g ((C;+F?B))+ﬁ'°gu )
0+§Iogu“ Y1)

3@ =D logu-+ (8- 13- (1= 1)
a-1 g1

© 1—p
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. 0
To find fipsap, we now set — L = 0 and solve for u

o

and thus

i=1

,u[znjl—x, ZX,—i—ﬂ—l—l—a—l
i=1

u{21+ﬁ+a—2

i=1

- 1 x;—LZ(l—x,-)—ka_l—E

(1—p) |:ZX,'+05—1:|
Zx,——i—oz—l
fo—i—oz—l



Maximum a posteriori (MAP) Estimation

Parameter Finally, if we let our Bernoulli distribution be coded as

Estimation
Bt Y Republican=1 and Democrat=0, we have that

Robinson

Zx,- = n, where n, denotes the number of Republican voters

1

(17)
Then,
" [Zl+ﬁ+a—2} = 2 xta-l
Maxin!urf]a i=1 i
(aP) - plntB+a=-2] = m+a-1
Estimation
and finally
N ng+a—1
Hmap = (18)

n+p8+a-—2
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And now our prediction

It is useful to compare the ML and the MAP predictions. Note
again that oo and 3 are essentially the same thing as pseudo-
counts, and the higher their value, the more the prior affects
the final prediction (i.e., the posterior).

Recall that in our poll of 100 members of the Wall Street Golf
club, only seven said they would vote democratic. Thus

e n=100

e n =093

@ We will assume that the mode of our prior belief is that
50% of the voters will vote democratic, and 50%
republican. Thus, « = 3. However, different values for
alpha and beta express different strengths of prior belief
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And now our prediction

n nR o« B Ame  fimap
100 93 1 1 0.93 0.93
100 93 5 5 0.93 0.90
100 93 100 100 0.93 0.64
100 93 1000 1000 0.93 0.52
100 93 10000 10000 0.93 0.502

Thus, MAP “pulls” the estimate towards the prior to an extent that depends on the strength of the prior



The use of MAP in MAQ
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Peter N of the three genotypes given the data D, that is a column with

Fobinson n aligned nucleotides and quality scores of which k correspond
to the reference a and n — k to a variant nucleotide b.

p(G = (a,a)|D) o p(D|G = (a,a))p(G = (a,a))
X apk-(1—r)/2
p(G = (b,b)|D) oc p(D|G = (b, b))p(G = (b, b))
X Qppk-(1—r)/2
p(G = (a,5)|D) o p(D|G = (a,b))p(G = (3, b))
n\ 1
N <k>2n~r
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Note that MAQ does not attempt to learn the parameters,
rather it uses user-supplied parameter r which roughly corre-

sponds to p in the election.

MAQ calls the the genotype with the highest posterior
probability:

g=  argmax  p(g|D)
gE((a,a),(a,b),(b,b))
The probability of this genotype is used as a measure of

MAQ . .
confidence in the call.
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MAQ: Consensus Genotype Calling

A major problem in SNV calling is false positive heterozygous
variants. It seems less probable to observe a heterozygous call
at a position with a common SNP in the population. For this
reason, MAQ uses a different prior (r) for previously known
SNPs (r =0.2) and “new” SNPs (r = 0.001).

Let us examine the effect of these two priors on variant calling.
In R, we can write

pl6 = (a.0)D) x () 57

as

> dbinom(k,n,0.5) * r

where k is the number of non-reference bases, n is the total number of bases, and 0.5 corresponds to the

probability of seeing a non-ref base given that the true genotype is heterozygous.
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MAQ: Consensus Genotype Calling

A major problem in SNV calling is false positive heterozygous
variants. It seems less probable to observe a heterozygous call
at a position with a common SNP in the population. For this
reason, MAQ uses a different prior (r) for previously known
SNPs (r =0.2) and “new” SNPs (r = 0.001).

Let us examine the effect of these two priors on variant calling.
In R, we can write

pl6 = (a.0)D) x () 57

as

> dbinom(k,n,0.5) * r

where k is the number of non-reference bases, n is the total number of bases, and 0.5 corresponds to the

probability of seeing a non-ref base given that the true genotype is heterozygous.
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@ The figures show the posterior for the heterozygous
genotype according to the simplified MAQ algorithm
discussed in the previous lecture

@ The prior r = 0.0001 means than positions with 5 or less
ALT bases do not get called as heterozygous, whereas the
prior with r = 0.2 means that positions with 5 bases do
get a het call

MAQ
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MAQ: Consensus Genotype Calling

What have we learned?

Get used to Bayesian techniques important in many areas
of bioinformatics

understand the difference between ML and MAP
estimation

understand the Beta function, priors, pseudocounts

Note that MAQ is no longer a state of the art algorithm,
and its use of the MAP framework is relatively simplistic

Nonetheless, a good introduction to this topic, and we will
see how these concepts are used in EM today
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