Segment Match Refinement

The function refine (\mathcal{M}) will make a k-partite graph with node sets $V^{0} \ldots V^{k-1}$ and edges E , which defines boundaries of the minimal resolved refinement of \mathcal{M}.

```
def cut(a):
    L}={\mp@subsup{M}{}{k}=(\mp@subsup{S}{u,v}{i},\mp@subsup{S}{x,y}{j})|u<a<v\veex<a<y
    for }\mp@subsup{M}{}{k}\in\mathcal{L}\mathrm{ :
        b= match position of a in sequence l given by M
        if b\not\in\mp@subsup{V}{}{l}:
                insert b into V}\mp@subsup{V}{}{l
                insert edge ( }k,a,b)\mathrm{ into E
                cut(b)
def refine(M):
    V = boundary positions of segments in sequence i
    for }\mp@subsup{M}{}{k}=(\mp@subsup{S}{u,v}{i},\mp@subsup{S}{x,y}{j})\in\mathcal{M}\mathrm{ :
        insert edge (k,u,x) and (k,v,y) into E
        for boundary position w of M}\mp@subsup{M}{}{k}\mathrm{ :
                cut(w)
    lexicographically order E
```

A pair of consecutive edges (k, u, v) and (l, x, y) in E , with $k=l$ defines a new segment match $M=\left(S_{u, x}^{i}, S_{v, y}^{j}\right)$ between sequences i and j. If you did not note the sequences the positions are from, you just have to look between which sequences the segment match i was defined.

